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Abstract: The diabetic heart is energetically and metabolically abnormal, with increased fatty acid
oxidation and decreased glucose oxidation. One factor contributing to the metabolic dysfunction in
diabetes may be abnormal handling of acetyl and acyl groups by the mitochondria. L-carnitine is
responsible for their transfer across the mitochondrial membrane, therefore, supplementation with
L-carnitine may provide a route to improve the metabolic state of the diabetic heart. The primary
aim of this study was to use hyperpolarized magnetic resonance imaging (MRI) to investigate the
effects of L-carnitine supplementation on the in vivo metabolism of [1-13C]pyruvate in diabetes. Male
Wistar rats were injected with either vehicle or streptozotocin (55 mg/kg) to induce type-1 diabetes.
Three weeks of daily i.p. treatment with either saline or L-carnitine (3 g/kg/day) was subsequently
undertaken. In vivo cardiac function and metabolism were assessed with CINE and hyperpolarized
MRI, respectively. L-carnitine supplementation prevented the progression of hyperglycemia, which
was observed in untreated streptozotocin injected animals and led to reductions in plasma triglyceride
and ß-hydroxybutyrate concentrations. Hyperpolarized MRI revealed that L-carnitine treatment
elevated pyruvate dehydrogenase flux by 3-fold in the diabetic animals, potentially through increased
buffering of excess acetyl-CoA units in the mitochondria. Improved functional recovery following
ischemia was also observed in the L-carnitine treated diabetic animals.

Keywords: magnetic resonance; L-carnitine; metabolic imaging; in vivo metabolism; hyperpolarized
13C; Langendorff perfusion; metabolomics; type-1 diabetes; cardiac imaging; streptozotocin

1. Introduction

Patients with diabetes are at increased risk of cardiovascular disease (hazard ratio
of 3.6–7.7 in patients with type-1 diabetes [1] and 1–5 in patients with type-2 diabetes [2].
The high energetic demands of the heart mean that dysregulated substrate utilization and
mitochondrial impairment are likely to be contributing factors to the impaired cardiac
function seen in the diabetic population [3,4]. The healthy heart generates 60–70% of
its required adenosine triphosphate (ATP) production from fatty acids (FAs), with the
remainder coming from glucose, amino-acids, ketone bodies and lactate [5]. However, in
diabetes this balance is shifted to even higher rates of fatty acid oxidation [6,7]. Lipotoxicity
has been suggested as a mechanistic link between the elevated supply and oxidation of
fatty acids in the diabetic heart and the subsequent cardiac dysfunction, with excess lipids
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also being implicated in the decreased post-ischemic recovery observed in the diabetic
heart. It has been proposed that an imbalance between the supply and oxidation of fatty
acids may lead to a build-up of potentially toxic fatty acid intermediates (e.g., ceramide,
diacylglycerol, etc.) in the cytosol, which leads to cardiovascular disease [8].

One potential reason for this imbalance may be an insufficient capacity for the han-
dling of acetyl and acyl groups into and out of the mitochondria in the diabetic heart.
Long-chain acyl groups are transported into mitochondria via the carnitine shuttle. The
carnitine shuttle requires L-carnitine to accept the FA moiety from long-chain acyl-CoAs
found in the cytoplasm, making them a suitable substrate for mitochondrial uptake via
the carnitine-acylcarnitine translocase (CACT) within the inner mitochondrial membrane.
It has previously been shown that plasma levels of L-carnitine are reduced in both dia-
betes [9–11] and cardiovascular disease [12,13]. Specifically, patients with type-1 diabetes
(T1D) have been shown to have lower free and total plasma L-carnitine levels compared to
the healthy population [9,10,13], a problem that worsens with the duration of the disease.
In addition, several groups have found that myocardial acetyl-CoA and acyl-CoA levels
are elevated in diabetes [14,15].

Supplementation with L-carnitine may therefore offer some therapeutic benefit to
the diabetic population. Indeed, multiple beneficial effects have already been observed
with L-carnitine supplementation in human patients with diabetes, such as reduced blood
pressure [16], a decline in inflammation [17] and improved cardiac function [18,19].

However, no studies to-date have investigated the effects of L-carnitine treatment on
in vivo metabolism. Therefore, in this study we aimed to further investigate the therapeutic
potential of L-carnitine supplementation on the diabetic heart to explore the mechanism
for its proposed beneficial effects. In vivo cardiac metabolism can be investigated using the
novel technique of hyperpolarized MRI. Hyperpolarized MRI allows for >10,000-fold in-
creases in the sensitivity of MRI to detect metabolic tracers labelled with the non-radioactive
isotope, carbon-13 [20]. In this way, hyperpolarized MRI allows the instantaneous assess-
ment of substrate uptake and cardiac metabolism in vivo in real time. By using hyperpo-
larized [1-13C]pyruvate, we aimed to investigate the effect of carnitine supplementation
on in vivo pyruvate metabolism in the diabetic heart and to compare that to alterations in
cardiac structure and function using CINE MRI. In addition, we also utilized a Langendorff
perfusion method to explore the effect of L-carnitine supplementation on post-ischemic
recovery in the diabetic heart.

2. Results
2.1. Animal Characterization

Streptozotocin (STZ) injection in male Wistar rats led to fasting hyperglycemia
(>15 mmol/L), observed at one-week post STZ injection that gradually increased
throughout the course of the experiment (Figure 1A). At five weeks post STZ injection,
diabetic animals had markedly elevated blood glucose levels, which was associated
with an elevated hypertrophy index of the kidneys (Figure 1B,C) and an elevation of
plasma non-esterified fatty acid (NEFA) levels by 111% and ß-hydroxybutyrate levels
by 201%, while triglycerides and lactic acid levels remained unchanged (Figure 1D–G).

Diabetic animals failed to gain weight over the course of the study, leading to a
significant difference in body weight between controls and diabetics at all time-points
after the initial weight matching (Figure 1H). Lack of weight gain in the diabetic animals
was attributed primarily to a reduction in fat mass as indicated by a 4.2-fold reduction in
epididymal fat pad weight (Figure 1I). There was also a small, but significant, reduction in
lean mass as measured by a decreased tibia length at the terminal time-point in the diabetic
animals (Figure 1J).
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2. (A) Fasted blood glucose concentration at 1, 2, 4 and 5 weeks, **** between CTR and STZ groups at 1, 2, 4 and 5 weeks. 
(B) Delta blood glucose concentrations between week two and week five. (C) Kidney hypertrophy index assessed as kid-
ney weight/body weight. (D) Non-esterified fatty acids (NEFA). (E) ß-hydroxybutyrate (3-OHB). (F) Triglycerides (TAG). 
(G) Lactic acid concentration. (H) Body weight measured at 1, 2, 4 and 5 weeks (Wk) post induction of diabetes. (I) Epi-
didymal fat pads. (J) Tibia length. Data are presented as mean ± SD. Two-way ANOVA, if an interaction was found to be 
significant, the effect of L-carnitine on control and diabetes was evaluated using Sidak’s multiple comparison test. Signif-
icant differences are represented by ‘*’, with * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

2.2. Cardiac Function 
Myocardial mass was reduced by 19% in the diabetic animals compared to the con-

trol animals (Figure 2C), a reduction that was slightly less than the reduction in body 
weight in the diabetic animals, leading to a small but significant increase in the heart 

Figure 1. Carnitine induced changes in diabetes. Animal characteristics five weeks post streptozotocin-induced diabetes
(STZ) or in citrate buffer injected controls (CTR), 50% of all animals were treated with L-carnitine (Carn) initiated at week
2. (A) Fasted blood glucose concentration at 1, 2, 4 and 5 weeks, **** between CTR and STZ groups at 1, 2, 4 and 5 weeks.
(B) Delta blood glucose concentrations between week two and week five. (C) Kidney hypertrophy index assessed as
kidney weight/body weight. (D) Non-esterified fatty acids (NEFA). (E) ß-hydroxybutyrate (3-OHB). (F) Triglycerides
(TAG). (G) Lactic acid concentration. (H) Body weight measured at 1, 2, 4 and 5 weeks (Wk) post induction of diabetes.
(I) Epididymal fat pads. (J) Tibia length. Data are presented as mean ± SD. Two-way ANOVA, if an interaction was found
to be significant, the effect of L-carnitine on control and diabetes was evaluated using Sidak’s multiple comparison test.
Significant differences are represented by ‘*’, with * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Animals treated with L-carnitine had significantly lower body weights in both control
and diabetic groups (Figure 1H). The progressive hyperglycemia seen in the saline treated
STZ animals was not observed in the L-carnitine treated STZ animals, where the blood
glucose levels did not continue to increase following the start of treatment (Figure 1A,B). L-
carnitine supplementation significantly reduced the hypertrophy index in the STZ animals
whilst it led to a small but significant increase in the control animals (Figure 1C). In addition,
L-carnitine treatment reduced ß-hydroxybutyrate levels by 25% in the control animals and
by 43% in the STZ animals and reduced triglyceride levels by 53% in the control animals
and by 32% in the STZ animals (Figure 1E,F).

2.2. Cardiac Function

Myocardial mass was reduced by 19% in the diabetic animals compared to the control
animals (Figure 2C), a reduction that was slightly less than the reduction in body weight in
the diabetic animals, leading to a small but significant increase in the heart weight/body
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weight ratio (Table 1). STZ-induced diabetes led to a 13% reduction in end-diastolic volume
(EDV), which resulted in a 22% reduction in stroke volume (SV), and when combined
with a significant reduction in heart rate (Table 1), a 31% reduction in cardiac output
(Figure 2E–G). However, after normalization for the observed differences in body weight,
no significant differences in cardiac index were seen across the groups (Figure 2H).
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Figure 2. The diabetic heart displays reduced cardiac function on CINE magnetic resonance imaging (MRI). (A) Example
CINE-MRI image of the rat heart in diastole. (B) Example CINE-MRI image of the rat heart at systole. (C) Average
myocardial wall mass. (D) End-systolic volume (ESV). (E) End-diastolic volume (EDV). (F) Stroke volume (SV). (G) Cardiac
output (CO). (H) Cardiac index. Data are presented as mean ± SD. Two-way ANOVA, if an interaction was found to
be significant, the effect of L-carnitine on control and diabetes was evaluated using Sidak’s multiple comparison test.
Significant differences are represented by ‘*’, with * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Table 1. Cardiac function obtained from CINE-MRI. Functional parameters are normalized to body weight (BW), where
stated. Data presented as mean ± SD. Two-way ANOVA. p-value displayed with the effect of streptozotocin (STZ), the
effect of L-carnitine (Carn) and the interaction between the two effects.

Control (CTR) Streptozotocin (STZ) STZ Carn Interaction

Saline L-Carnitine Saline L-
Carnitine p-Value p-Value p-Value

Myocardial mass/BW 0.43 ± 0.06 0.45 ± 0.06 0.51 ± 0.07 0.52 ± 0.07 0.002 0.57 0.94
Heart Rate (HR) 408 ± 15 405 ± 41 353 ± 33 335 ± 40 <0.0001 0.38 0.51

End-Systolic
Volume/BW 0.08 ± 0.02 0.13 ± 0.03 0.13 ± 0.03 0.19 ± 0.06 0.0003 0.0002 0.49

End-Diastolic
Volume/BW 0.36 ± 0.04 0.39 ± 0.04 0.42 ± 0.04 0.52 ± 0.05 <0.0001 0.0003 0.018

Stroke Volume/BW
(Stroke Index) 0.28 ± 0.02 0.26 ± 0.03 0.30 ± 0.04 0.32 ± 0.03 0.0008 0.87 0.024

Ejection Fraction (EF) 78 ± 4 67 ± 6 68 ± 8 63 ± 8 0.0057 0.0024 0.20

Animals treated with L-carnitine demonstrated elevated end-systolic volumes by
47% and 44% in the control and STZ injected animals, respectively (Figure 2D), leading
to a significant reduction in ejection fraction (Table 1), potentially indicating a degree of
systolic dysfunction. This change was highlighted by a 15% reduction in stroke volume and
cardiac output in the L-carnitine treated control animals (Figure 2F), however, no further
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reduction in stroke volume or cardiac output was observed in the STZ animals treated
with L-carnitine due to a significant increase in end-diastolic volume caused by L-carnitine
supplementation (Figure 2E).

2.3. Cardiac Metabolism

As has previously been observed [21], pyruvate dehydrogenase (PDH) flux, as as-
sessed by 13C-bicarbonate and 13CO2 production from the injected hyperpolarized [1-
13C]pyruvate, was significantly reduced in the STZ-induced diabetic heart (Figure 3C).
L-carnitine treatment led to a differential response in the control and diabetic animals, caus-
ing a significant increase in PDH flux, by approximately 3-fold in the diabetic animals and
a significant decrease in PDH flux in the control animals by 1.7-fold. The diabetic animals
showed elevated production of lactate and alanine compared to the controls (Figure 3D,E),
and L-carnitine treatment led to a small but significant elevation in alanine production in
both the control (18%) and the diabetic (33%) heart (Figure 3E).
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Figure 3. Carnitine can modulate in vivo cardiac metabolism. In vivo effects on cardiac metabolism by infusion of hyperpo-
larized [1-13C]pyruvate and [2-13C]pyruvate. (A) Example [1-13C]pyruvate spectrum acquired from the in vivo rat heart.
(B) Example [2-13C]pyruvate spectrum acquired from the in vivo rat heart. (C) Bicarbonate + CO2/pyruvate ratio, as a mea-
sure of pyruvate dehydrogenase (PDH) flux. (D) Lactate/pyruvate ratio. (E) Alanine/pyruvate ratio. (F) Citrate/pyruvate
ratio normalized to PDH flux. (G) Glutamate/pyruvate ratio normalized to PDH-flux. (H) Acetylcarnitine/pyruvate ratio
normalized to PDH-flux. Data are presented as mean ± SD. Two-way ANOVA, if an interaction was found to be significant,
the effect of L-carnitine on control and diabetes was evaluated using Sidak’s multiple comparison test. Significant differences
are represented by ‘*’, with * p < 0.05, ** p < 0.01, **** p < 0.0001.
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Following injection of hyperpolarized of [2-13C]pyruvate, and after normalization for
differences in PDH flux, no changes were observed in the incorporation of the 13C label
into citrate across the groups (Figure 3F). However, a small but significant increase in 13C
label incorporation into glutamate was observed in the STZ injected animals (Figure 3G).
L-carnitine treatment led to a 1.6-fold and 2.1-fold increase in the incorporation of the 13C
label into acetylcarnitine in the control and diabetic animals respectively (Figure 3H).

2.4. Carnitine/Acyl Carnitine Levels

STZ animals showed no significant differences in either plasma or cardiac free L-
carnitine levels when compared to control animals (Figure 4A,B). Equally there were no
differences in short-chain acyl-carnitine levels between STZ and CTR animals when all
species were summed together (Figure 4C); however, when the individual carnitine species
were considered separately (Table 2), significant increases in C5, C6, C8, C8_1 and C10
acyl-carnitines were observed in the hearts of STZ injected animals. When considering
the medium- and long-chain acyl-carnitines (Figure 4D,E), significant increases were also
observed in the STZ animals compared to the control animals (Figure 4D,E).
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Figure 4. Carnitine modulates cardiac acyl-carnitine species. (A) Free L-carnitine in plasma. (B) Free L-carnitine in
cardiac tissue. (C) All short-chain acyl-carnitines summed (C2-C10) in heart tissue. (D) All medium-chain acyl-carnitines
summed (C12–C15) in heart tissue. (E) All long-chain acyl-carnitines summed (>C15) in heart tissue. Data are presented
as mean ± SD. Two-way ANOVA, if an interaction was found to be significant, the effect of L-carnitine on control and
diabetes was evaluated using Sidak’s multiple comparison test. Significant differences are represented by ‘*’, with * p < 0.05,
** p < 0.01, *** p < 0.001.

L-carnitine treatment elevated both plasma and cardiac free L-carnitine levels, as
well as short-chain acyl-carnitine levels in the cardiac tissue of control and STZ animals
(Figure 4A–C). Analysis of the individual short-chain carnitine species, showed this ele-
vation to be driven by significant increases in the C3, C4, C5, C6 and C8 species (Table 2).
L-carnitine treatment led to a significant increase in the medium-chain acyl-carnitines in
the control animals but had no effect on the long-chain acyl-carnitines in either the STZ or
control animals (Figure 4D,E).
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Table 2. Short-chain cardiac acyl-carnitine levels for the different species assessed. Data are presented as mean ±SD. Two-
way ANOVA. p-value displayed with the effect of streptozotocin (STZ), the effect of L-carnitine (Carn) and the interaction
between the two effects.

Control (CTR) Streptozotocin (STZ) STZ Carn Interaction

Saline L-Carnitine Saline L-Carnitine p-Value p-Value p-Value

C2
(µmol/gww) 8.6 ± 4.9 11.3 ± 1.7 6.8 ± 3.8 10.1 ± 5.3 0.33 0.07 0.82

C3
(µmol/gww) 0.30 ± 0.11 0.73 ± 0.34 0.26 ± 0.14 1.09 ± 0.59 0.17 <0.0001 0.10

C4
(µmol/gww) 0.11 ± 0.03 0.39 ± 0.17 0.20 ± 0.09 0.36 ± 0.18 0.56 <0.0001 0.17

C5
(µmol/gww) 0.04 ± 0.02 0.12 ± 0.08 0.06 ± 0.04 0.24 ± 0.13 0.02 <0.0001 0.11

C5_1
(µmol/gww) 0.007 ± 0.003 0.010 ± 0.004 0.005 ± 0.003 0.007 ± 0.005 0.10 0.05 0.88

C6
(µmol/gww) 0.009 ± 0.004 0.055 ± 0.033 0.054 ± 0.034 0.089 ± 0.042 0.002 0.002 0.61

C8
(µmol/gww) 0.002 ± 0.001 0.010 ± 0.003 0.018 ± 0.012 0.024 ± 0.011 0.0002 0.04 0.85

C8_1
(µmol/gww) 7.0 ± 1.5 × 10−5 4.9 ± 2.5 × 10−5 8.2 ± 4.2 × 10−5 10.9 ± 3.2 × 10−5 0.02 0.82 0.11

C10
(µmol/gww) 0.002 ± 0.001 0.008 ± 0.002 0.015 ± 0.007 0.018 ± 0.011 <0.001 0.06 0.54

C10_1
(µmol/gww) 0.0002 ± 0.0001 0.0002 ± 0.0001 0.0003 ± 0.0001 0.0002± 0.0001 0.52 0.44 0.71

2.5. Post-Ischemic Recovery

As a marker of cardiac function, rate pressure product (RPP) was similar across all
groups pre-ischemia. However, a functional impairment was observed post-ischemia
with RPP 76% lower in the diabetic hearts after reperfusion compared with controls
(Figure 5A–C). The observed impairment in post-ischemic function in the diabetic heart
was due to a reduced systolic pressure (26% reduction) and developed pressure (67%
reduction) when compared with the control animals (Table 3). However, L-carnitine
treatment led to a significant elevation in post-ischemic RPP by 3.6-fold in the L-carnitine
treated diabetic animals (Figure 5C). The improved functional recovery post ischemia
(Figure 5D) was driven by a significantly reduced difference (delta) in the diastolic pressure
between pre- and post-ischemia in the L-carnitine treated diabetic animals (Figure 5E).
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significant, the effect of L-carnitine on control and diabetes was evaluated using Sidak’s multiple 
comparison test. Significant differences are represented by ‘*’, with * p < 0.05, ** p < 0.01, **** p < 
0.0001. 

Figure 5. Carnitine rescues cardiac function in diabetes after low-flow ischemia in Langendorff perfused hearts. (A) Rate
pressure product (RRP) over time: pre-ischemia (t = 1:20 min), low flow ischemia (t = 21:50 min), post ischemia (t = 51:80 min).
(B) Rate pressure product (RRP) pre-ischemia. (C) Rate pressure product (RRP) post-ischemia. (D) Percentage recovery
between pre-ischemia (t = 10:20 min) and post-ischemia (t = 70:80 min). (E) Difference between post-ischemia and pre-
ischemic diastolic pressure (∆DiaP). Diastolic pressure was set during pre-ischemia to 4–8 mmHg. Data are presented
as mean ± SD. Two-way ANOVA, if an interaction was found to be significant, the effect of L-carnitine on control and
diabetes was evaluated using Sidak’s multiple comparison test. Significant differences are represented by ‘*’, with * p < 0.05,
** p < 0.01, **** p < 0.0001.
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Table 3. Langendorff perfusions. Functional parameters obtained pre- and post-ischemia in control (CTR) and diabetic
(STZ) animals using a Langendorff ischemia-reperfusion method. Data are presented as mean ± SD. Two-way ANOVA.
p-value displayed with the effect of streptozotocin (STZ), the effect of L-carnitine (Carn) and the interaction between these
effects. STZ = streptozotocin, Carn = carnitine, CTR = control, RPP = rate pressure product, HR = heart rate.

Pre-Ischemia

Control (CTR) Streptozotocin (STZ) STZ Carn Interaction

Saline L-Carnitine Saline L-Carnitine P-Value p-Value p-Value

RPP
(×104 mmHg × bpm) 3.7 ± 1.2 3.3 ± 0.6 3.3 ± 0.6 2.5 ± 0.9 0.19 0.17 0.63

HR
(bpm) 290 ± 42 227 ± 41 221 ± 20 195 ± 38 0.010 0.021 0.30

Developed Pressure
(mmHg) 132 ± 38 137 ± 12 149 ± 15 125 ± 31 0.87 0.48 0.29

Systolic Pressure
(mmHg) 133 ± 33 141 ± 10 148 ± 19 134 ± 25 0.74 0.77 0.32

Post-Ischemia

Control (CTR) Streptozotocin (STZ) STZ Carn Interaction

Saline L-Carnitine Saline L-Carnitine p-Value p-Value p-Value

RPP
(×104 mmHg × bpm) 2.9 ± 0.7 2.2 ± 1.2 0.7 ± 0.6 2.5 ± 0.8 0.034 0.16 0.0072

HR
(bpm) 256 ± 50 201 ± 28 197 ± 103 253 ± 48 0.91 0.99 0.072

Developed Pressure
(mmHg) 115 ± 34 106 ± 46 38 ± 43 106 ± 14 0.028 0.085 0.029

Systolic Pressure
(mmHg) 137 ± 31 149 ± 18 102 ± 19 124 ± 12 0.0078 0.10 0.63

Diastolic Pressure
(mmHg) 22 ± 24 43 ± 35 65 ± 30 14 ± 5 0.60 0.23 0.009

3. Discussion

The primary aim of this work was to explore the metabolic and functional effects of
L-carnitine supplementation on the diabetic heart. In line with previous studies [19,22],
daily L-carnitine injections led to improvements in blood glucose levels, preventing the
progressive hyperglycemia seen in the untreated diabetic animals, and led to improved
functional recovery post-ischemia, with increased RPP and reduced diastolic pressure.
These beneficial effects occurred in parallel with increased in vivo flux through pyruvate
dehydrogenase (PDH), indicating increased glucose utilization in the L-carnitine treated
diabetic heart. However, L-carnitine supplementation also led to a reduction in ejection
fraction in both control and diabetic animals, a finding that requires further investigation.

Daily L-carnitine treatment led to increased levels of free L-carnitine in the hearts
of both the control and STZ injected animals, resulting in the increased incorporation
of hyperpolarized [2-13C]pyruvate into [1-13C]acetylcarnitine. Increased availability of
free L-carnitine by the treatment regimen was hypothesized to increase the buffering of
excess fatty acid-derived acetyl-CoA and acyl-CoA units, which we expected would allow
increased flux through PDH, known to be inhibited in diabetes [23,24]. This finding is
supported by the metabolomic data, which revealed increased levels of short chain acyl-
carnitine species in the hearts of the carnitine treated animals, with significant increases
observed in the C3, C4, C5, C6 and C8 acyl-carnitines.

In the diabetic animals, L-carnitine supplementation led to increased flux of [1-
13C]pyruvate through the pyruvate dehydrogenase complex, indicating increased glucose
oxidation in the L-carnitine treated diabetic heart. This finding is supported by previous
work, which has demonstrated increased flux through PDH in isolated rat cardiomy-
ocytes [25] and increased glucose oxidation in perfused rat hearts acutely treated with
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L-carnitine [26,27]. It is also in agreement with previous observations in ex vivo isolated
human skeletal muscle mitochondria [28].

In contrast to the effect seen in the diabetic heart, L-carnitine supplementation led to
a significant reduction in flux through PDH in the healthy heart. The differential effect
observed here may find its basis in the different levels of fatty acid oxidation that occur
in the healthy and diabetic heart. In the setting of diabetes, the elevated levels of fatty
acid oxidation are known to lead to inhibition of PDH through upregulation of PDH
kinase expression and elevated levels of fatty acid-derived acetyl-CoA and NADH [23,24].
Providing supplemental L-carnitine may offer a buffer of these excess acetyl-CoA units, and
therefore, a release of the fatty acid-derived inhibition of PDH [28]. In the healthy heart, the
provision of additional L-carnitine may have the opposite effect, i.e., increasing the uptake
of fatty acids into the mitochondria through the carnitine shuttle from normal baseline
levels, increasing the rate of fatty acid oxidation and leading, as seen in the untreated
diabetic heart, to inhibition of PDH due to the increased levels of fatty acid-derived acetyl-
CoA and NADH.

As we have previously proposed, increasing flux through PDH can be considered
as a potential therapeutic target in diabetic cardiomyopathy, leading to improved cardiac
function [29]. In this study, functional improvement was seen in terms of increased
RPP recovery post-ischemia in the Langendorff perfused heart. The improved RPP was
mediated by an increase in developed pressure in the carnitine treated diabetic hearts,
driven by reductions in the post-ischemic diastolic pressure. In agreement with this finding,
previous work from our laboratory has demonstrated improvements in in vivo diastolic
function following treatment with the PDH activator, dichloroacetate (DCA) [30].

However, assessment of in vivo cardiac function revealed a significant increase in end
systolic function in the control and diabetic animals treated with L-carnitine, leading to a
significant reduction in ejection fraction, indicating a degree of systolic dysfunction. In the
control animals treated with L-carnitine, this also led to a significant reduction in stroke
volume and cardiac output. These functional changes were seen in line with significant
reductions in body weight in the L-carnitine treated animals and when the functional data
was normalized for these body weight differences, no significant differences in cardiac
index were observed. Many previous studies have reported beneficial effects of L-carnitine
treatment on cardiac function; however, such reports have commonly explored the effects
on cardiac function in ex vivo perfused hearts and only in diabetic animals treated with
L-carnitine [19]. Further work is clearly required to investigate the effect of L-carnitine
supplementation on cardiac function in the healthy heart.

L-carnitine supplementation has previously been proposed as a potential weight
loss agent, with a meta-analysis in human subjects revealing that those who received
L-carnitine lost significantly more weight [31]. The mechanism proposed for this weight
loss is increasing energy expenditure caused by the effect of L-carnitine on glucose and
lipid metabolism [32]. In addition, Rodrigues et al. showed that two weeks of L-carnitine
treatment led to lower intake of food compared to normal rats [19], suggesting alleviation
of perceived hunger [33]. Even though food was not weighed in this study, it seems likely
that the decreased weight gain may be due to a combination of lower food consumption
and the direct effects of L-carnitine on whole-body metabolism.

Study Limitations

In addition to the observed blood glucose improvements, increased PDH flux, reduced
kidney hypertrophy index and improved cardiac function post-ischemia, daily L-carnitine
injections led to reductions in triglyceride and ß-hydroxybutyrate levels in the diabetic
animals. Such findings are potentially indicative of changes in systemic lipid handling
(for example, increased fatty acid oxidation, increased ketolysis or decreased de novo
lipogenesis). Unfortunately, it was not possible to directly assess fatty acid oxidation
in vivo, as hyperpolarized MRS is currently unable to probe the oxidation of long-chain
fatty acids. However, recent developmental work has shown the ability of hyperpolarized
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MRS to probe the oxidation of short-chain fatty acids and ketone bodies [34–36], which
may provide further mechanistic insight into the effects of L-carnitine supplementation.

Previous studies of STZ induced diabetes have revealed reductions in free L-carnitine
in the diabetic heart [19]. In our study, the free L-carnitine levels in the saline-treated STZ
injected diabetic animals were 3.90 ± 2.30 µmol/gww, a 23% reduction compared to the
saline injected control animals at 5.05 ± 2.30 µmol/gww. However, this reduction failed to
reach statistical significance (p = 0.24). It is possible that a longer duration of diabetes (in
our study the animals were diabetic for five weeks versus the six week period investigated
by Rodrigues et al. [19]) or larger group sizes may help to clarify this point.

4. Materials and Methods
4.1. Animal Protocol

Animal studies were conducted in accordance with the UK Animals (Scientific Proce-
dures) Act (1986), PPL Number 30/3322, and local ethical guidelines (Medical Research
Council Responsibility on the Use of Animals for Medical Research, July 1993). Seventy-
two male Wistar rats (~200 g) were randomly divided into four groups. All animals were
fasted overnight and then either made diabetic with one i.p. injection of streptozotocin
(STZ, 55 mg/kg in citrate buffer) or injected with vehicle citrate buffer.

Two weeks after STZ/citrate buffer injection, all animals were initiated on daily
morning intraperitoneal (i.p.) injections of either saline or L-carnitine (3 g/kg/day), for
three weeks. After two weeks of treatment (four weeks after STZ/vehicle), all animals
were anesthetized with 2.5% isoflurane in 1 liter/min O2 and subjected to MR imaging and
hyperpolarized MR spectroscopy (MRS).

After three weeks of treatment, all animals were euthanized in the fed state with 5%
isoflurane vol:vol in 2 liters/min O2, followed by removal of the heart and kidneys. The
hypertrophy index (HI) was calculated as the sum of the left and right kidney weights
normalized to body weight. Other investigators have reported HI in the literature as a pro-
gressive marker of diabetic renal disease [37–39]. The right tibia length was measured and
epididymal fat pads were obtained from the posterior subcutaneous depots as described by
Chusyd et al. [40]. In a subset of animals, the hearts were excised for Langendorff perfusion,
whilst in the others, the hearts were immediately freeze-clamped in liquid nitrogen for
biochemical analysis. Blood samples, taken from the chest cavity, were centrifuged, and
plasma stored at -80 ◦C for later biochemical analysis.

4.2. CINE Magnetic Resonance Imaging (MRI)

Rodents were imaged on a 7T horizontal bore MRI instrument (Varian Inc, Santa Clara,
CA, USA), using a four-channel 1H phased-array four-channel surface receive coil (RAPID
Biomedical GmbH, Rimpar, Germany) and a 72 mm 1H/13C volume transmit coil. Eight to
ten short-axis slices (slice thickness, 1.6 mm; matrix size, 128 × 128; TE/TR, 4.6/1.45 ms;
flip angle, 18◦; number of averages, 4) were acquired with a CINE-FLASH sequence [41].
Left ventricular volumes were derived using the free-hand draw function in ImageJ (NIH,
Bethesda, MD, USA). For each heart, left ventricular mass, ejection fraction, stroke volume
and cardiac output were calculated. Average myocardial wall mass of the left ventricle was
obtained from the average of the end-diastolic and end-systolic masses. Stroke volume was
obtained from the difference between the end-diastolic lumen and the end-systolic lumen.

4.3. Hyperpolarized Magnetic Resonance Spectroscopy (MRS)

Experiments were performed between 7 am and 1 pm, when rodents were in the fed
state. Approximately 40 mg of either [1-13C]pyruvic acid or [2-13C]pyruvic acid (Sigma-
Aldrich, St. Louis, MO, USA) doped with 15mM trityl radical (OXO63, GE Healthcare)
and 3µL Dotarem (1:50 dilution, Guerbet), was hyperpolarized in a prototype polarizer,
with 30–40 min of microwave irradiation [20]. The sample was subsequently dissolved
in a pressurized and heated alkaline solution, containing 2.4 g/L sodium hydroxide and
100 mg/L EDTA dipotassium salt (Sigma-Aldrich, St. Louis, MO, USA), to yield an
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80 mM solution of either hyperpolarized sodium [1-13C]pyruvate or [2-13C]pyruvate with
a polarization of approximately 30% or 20% respectively, at physiological temperature
and pH. From the resulting solution, 1 mL was injected over 10 s via a tail vein catheter
into a rat located in the 7T MRI system described above. Using the 72 mm 1H/13C
volume transmit coil and a two-channel 13C surface receive coil (RAPID Biomedical GmbH,
Rimpar, Germany), ECG-gated, 13C MR pulse-acquire cardiac spectra were acquired over
60 s following injection of hyperpolarized pyruvate (repetition time, 1 s; excitation flip
angle, 15◦; sweep width, 13,021 Hz; acquired points, 2048) [42]. Each animal was injected
with [1-13C]pyruvate and [2-13C]pyruvate in a random order and with at least one hour
between injections. The 13C label from pyruvate and its metabolic products were summed
over 30 s from the first appearance of pyruvate, and fitted with the AMARES algorithm
within jMRUI [43]. Each of the metabolites was quantified as the ratio of the metabolite to
either [1-13C]pyruvate or [2-13C]pyruvate. All metabolites obtained from [2-13C]pyruvate
were subsequently normalized to pyruvate dehydrogenase (PDH) flux, measured as the
13C-bicarbonate + 13CO2/[1-13C]pyruvate ratio recorded in the same animal, in order to
assess any changes within the Krebs cycle independent of any changes in 13C label flux
through PDH.

4.4. Langendorff Perfusion

A Langendorff ischemia-reperfusion protocol was undertaken in a subset of animals,
five weeks post induction of diabetes. Following excision, the hearts were immediately
cannulated via the aorta and perfused with warm Krebs–Henseleit (KH) buffer (37 ◦C)
containing 11 mM glucose and 0.4 mM of palmitate, at a constant pressure of 100 mmHg
as described by Heather et al. [44]. A water-filled PVC balloon, which was connected via
a polythene tube to a calibrated pressure transducer, a bridge amplifier, and a PowerLab
data acquisition system (AD Instruments, Oxfordshire, UK), was inserted into the left
ventricle to measure cardiac function. The balloon was inflated to an end-diastolic pressure
of 4–8 mmHg. Developed pressure was calculated as the difference between systolic and
diastolic pressure, and rate pressure product (RPP) was obtained by multiplying developed
pressure by heart rate. Hearts were subjected to 20 min of normal flow (t = 1:20 min),
followed by 30 min of low-flow ischemia (0.4 mL/min, t = 21:50 min) and reperfused again
with normal flow for a further 30 min (t = 51:80 min). The hearts were freeze-clamped with
liquid nitrogen-cooled Wallenberger tongs whilst still beating on the perfusion apparatus
at t = 80 min.

4.5. Blood Metabolites

Fasted blood samples and glucose levels were obtained at two, four and five weeks
post STZ injection. Insulin (Mercodia, Uppsala, Sweden) and NEFA (Randox Labora-
tories, Crumlin, County Antrim, UK) were measured in the fasted plasma using assay
kits. Terminal fed plasma metabolites samples were analyzed for ß-hydroxybutyrate (3-
OHB), triglycerides (TAG) and lactic acid using an ABX Pentra 400 (Horiba ABX-UK,
Northampton, UK).

Terminal fed blood samples were also assessed for low-molecular-weight metabo-
lites with liquid chromatography-mass spectrometry (LC-MS) within the Department
of Chemistry, University of Oxford. Plasma samples were filtered through molecular
weight cut-off filters (10 kDa) to remove proteins [45]. The infranatant was recovered and
evaporated to dryness under reduced pressure. Sample residue was then resuspended in
acetonitrile:water (95%:5%). For LC-MS, acylcarnitines were separated and resolved using
hydrophobic-interaction liquid chromatography-mass spectrometry (HILIC) as previously
outlined [45,46]. Putative compounds were identified with reference to authenticated
standards for selected acylcarnitines using retention time, accurate mass and fragmenta-
tion pattern to identify individual compounds [45]. Concentrations were calculated with
reference to specific standard curves.
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4.6. Cardiac Tissue Metabolomics

On the freeze-clamped non-perfused hearts, low-molecular-weight metabolites were
assessed using Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS)
as previously described [47]. Tissue extraction of freeze-clamped hearts was done at
30 mg/500 µL MeOH:Chloroform (2:1 v/v), using metal-bead containing tubes and a
Precellys tissue homogenizer (Bertin Instruments, Montigny-le-Bretonneux, France), at
6000 rpm for 2 × 30s with a 2 min rest on ice in between each cycle. Pellets were extracted
twice and lipid and aqueous phases evaporated separately, dried extracts were then resus-
pended just prior to LC-MS/MS as described by Wang et al. [47]. Metabolomics of aqueous
metabolites in heart tissue extracts were subsequently summed into short, medium and
long-chain acyl-carnitines. Short chain acyl-carnitines contained a carbon chain length of
10 carbons or less, medium chain acyl-carnitines were between 12 and 15 carbons in length,
and long chain acyl-carnitines were longer than 15 carbon molecules.

4.7. Statistics

All data are presented as mean ± standard deviation (SD) of the indicated number
of rodents (n). Two-way ANOVA was used for assessment of significance examining
the effects of STZ injection and the effect of L-carnitine treatment. When an interaction
term was significant in the two-way ANOVA, post-hoc multiple comparison testing using
Sidak’s correction was used to investigate the effect of L-carnitine supplementation on
both the control and diabetic groups, respectively. Outlier analysis was undertaken using
Grubb’s test in Graphpad Prism (GraphPad Software, San Diego, CA, USA). Differences
between groups were considered statistically significant if p < 0.05.

5. Conclusions

In summary, we have demonstrated that L-carnitine treatment in the diabetic heart
leads to improved glucose handling, reduced levels of kidney hypertrophy and improved
functional recovery following ischemia-reperfusion, as assessed by increased RPP and
reduced diastolic pressure. Mechanistically, these outcomes are potentially linked with an
L-carnitine driven increase in PDH flux due to buffering of short chain acyl carbons within
the myocardium of the diabetic heart. However, significant reductions in ejection fraction
were observed following L-carnitine treatment, which requires further investigation.
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