Supporting Information:

Human carnitine biosynthesis proceeds via (2S, 3S)-3-hydroxy- N^{ε} -trimethyllysine

Robert K. Leśniak^a, Suzana Markolovic^a, Kaspars Tars^b, and Christopher J. Schofield^{a*}

^a Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.

^b Biomedical Research and Study Centre, Ratsupites 1, LV1067 Riga, Latvia.

*To whom correspondence should be addressed. Email: christopher.schofield@chem.ox.ac.uk. Telephone: +44 (0)1865 285 000. Fax: +44 (0)1865 285 002. Address: Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.

Contents

Enzyme Production3NMR materials and methods3Amino acid analysis.4Figures5Figures IA ¹ H NMR spectrum of the Mosher's esters resulting from the reaction of formamide(9) with (S)-Mosher's acid.5Figure S1D ¹ F NMR spectrum of the Mosher's esters resulting from the reaction of formamide(9) with (R)-Mosher's acid.5Figure S1D ¹ F NMR Mosher ester analysis of the C-3 alcohol of formamide (9).6Figure S1D ¹ F NMR Mosher ester analysis of the C-3 alcohol of formamide (9).7Figure S3D ¹ H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13)and (R)-Mosher's acid chloride.8Figure S3A ¹ H - ¹ H COSY spectrum of TMLH-catalysed TML hydroxylation.9Figure S3A ¹ H - ¹ H COSY spectrum of TMLH-catalysed TML hydroxylation10Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 20G11Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time13Figure S3E ¹ H NMR spectrum of (25,3R)/(2R,3S) -3HO-Lys (11).15Figure S3E ¹ H NMR spectrum of (25,3R)/(2R,3S) -3HO-Lys (11).15Figure S4A mino acid analysis of TML-catalysed hydroxylation product.14Figure S5B ¹³ C NMR spectrum of (25,3R)/(2R,3S) -3HO-Lys (11).16Figure S5B ¹³ C NMR spectrum of (25,3R)/(2R,3S) -3HO-Lys (11).16Figure S6A ¹⁴ NMR spectrum of (25,3R)/(2R,3S) -3HO-Lys (11).16Figure S7B ¹³ C NMR spectrum of (25,3R)/(2R,3S)	General Experimental Methods	3
NMR materials and methods3 Amino acid analysis3 Amino acid analysis3 Amino acid analysis3 Amino acid analysis4Figures5 Figure S1A 'H NMR spectrum of the Mosher's esters resulting from the reaction of formamide (9) with (S)-Mosher's acid.5 Figure S1B 'H NMR spectrum of the Mosher's esters resulting from the reaction of formamide (9) with (K)-Mosher's acid.5 Figure S1C 'H NMR Mosher ester analysis of the C-3 alcohol of formamide (9). A Figure S2 'H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13) and (R)-Mosher's acid chloride.8 Figure S3B 'H-1'H COSY spectrum of TMLH-catalysed TML hydroxylation10 Figure S3D 'H-1'H COSY spectrum of TMLH-catalysed TML hydroxylation10 Figure S3D 'H-1'H COSY spectrum of TMLH-catalysed TML hydroxylation10 Figure S3D 'H-1'H COSY spectrum of TMLH-catalysed TML hydroxylation11 Figure S3D 'H-1'H COSY spectra of TMLH-catalysed TML hydroxylation is coupled to 20G conversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm).12 Figure S3E 'H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time ($\delta = 2.95 - 3.95$ ppm).13 Figure S3F Numbering used in TMLH product assignment. Figure S3F 'H NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).15 Figure S3F 'H NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).15 Figure S3F 'H NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).16 Figure S3F 'H NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).16 Figure S7A 'H NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).16 Figure S7A 'H NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).16 Figure S7A 'H NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).17 Figure S7B 'iS C NMR spectrum of ($2S_3R$)/($2R_3S$)-3H0-Lys (11).1	Enzyme Production	3
Amino acid analysis.4Figures5Figure S1A ¹ H NMR spectrum of the Mosher's esters resulting from the reaction of formamide5(9) with (S)-Mosher's acid.5Figure S1D ¹ H NMR spectrum of the Mosher's esters resulting from the reaction of formamide6(9) with (R)-Mosher's acid.5Figure S1D ¹⁰ F NMR Mosher ester analysis of the C-3 alcohol of formamide (9).6Figure S1D ¹⁰ F NMR Mosher ester analysis of the C-3 alcohol of formamide (9).7Figure S2D ¹¹ H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13)and (R)-Mosher's acid chloride.and (R)-Mosher's acid chloride.8Figure S3A ¹¹ H- ¹¹ C COSY spectrum of TMLH-catalysed TML hydroxylation.9Figure S3A ¹¹ H- ¹¹ C HSQC spectrum of TMLH-catalysed TML hydroxylation.10Figure S3A ¹¹ H NMR spectrum of TMLH-catalysed (2S,3S)-3HO-TML (14) spiked with synthetic12(2S,3R)/(2R,3S)-3HO-TML (13) post-HPLC purification.11Figure S3D ¹¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 2OG12conversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm).12Figure S3E ¹¹ H NMR spectra of TMLH-catalysed MJL hydroxylation monitored over time($\delta = 2.95 - 3.95$ ppm).13Figure S5A ¹¹ H NMR spectrum of (2S,3R)/(2R,3S)-3HO-Lys (11).15Figure S5A ¹² H NMR spectrum of (2S,3R)/(2R,3S)-3HO-Lys (11).16Figure S5A ¹³ C NMR spectrum of (2S,3R)/(2R,3S)-3HO-Lys (11).16Figure S5B ¹³ C NMR spectrum of (2S,3R)/(2R,3S)-3HO-Lys (11).16Figure S5B ¹³ C NMR spectrum of (2S,3R)/(2R,3S)-3HO	NMR materials and methods	3
Figure S1A ¹ H NMR spectrum of the Mosher's esters resulting from the reaction of formamide (9) with (S)-Mosher's acid	Amino acid analysis	4
Figure S1A ¹ H NMR spectrum of the Mosher's esters resulting from the reaction of formamide(9) with (3)-Mosher's acid.5Figure S1B ¹ H NMR Mosher ester analysis of the C-3 alcohol of formamide (9)	Figures	5
	Figure S1A ¹ H NMR spectrum of the Mosher's esters resulting from the reaction of formamide	
Figure S1B 1H NMR spectrum of the Mosher's esters resulting from the reaction of formamide(9) with (R)-Mosher's acid.5Figure S1D 19F NMR Mosher ester analysis of the C-3 alcohol of formamide (9)6Figure S1D 19F NMR Mosher ester analysis of the C-3 alcohol of formamide (9)7Figure S2 1H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13)8and (R)-Mosher's acid chloride.8Figure S3A 1H-1H COSY spectrum of TMLH-catalysed TML hydroxylation.9Figure S3C 1H NMR spectrum of TMLH-catalysed TML hydroxylation.10Figure S3C 1H NMR spectrum of TMLH-catalysed TML hydroxylation is coupled to 2OG11Conversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm)12Figure S3E 1H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time $(\delta = 2.95 - 3.95$ ppm)Figure S3F Numbering used in TMLH product assignment.13Figure S5B 14C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)15Figure S5B 14C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)16Figure S5B 14C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)16Figure S7B 14C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)17Figure S7B 14C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)17Figure S7B 14C CNR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)16Figure S7B 14C CNR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)17Figure S7B 14C CNR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)16Figure S7B 14C CNR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11)16Figure S7B 14C CNR spectrum of ($2S_3R$	(9) with (S)-Mosher's acid	5
	Figure S1B ¹ H NMR spectrum of the Mosher's esters resulting from the reaction of formamide	_
Figure S1C ¹ H NMR Mosher ester analysis of the C-3 alcohol of formamide (9)	(9) with (<i>R</i>)-Mosher's acid	5
Figure S1D ¹⁹ F NMR Mosher ester analysis of the C-3 alcohol of formanide (9)7Figure S2 ¹ H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13)and (R)-Mosher's acid chloride.8Sigure S3A ¹ H- ¹⁴ C HSQC spectrum of TMLH-catalysed TML hydroxylation.99Figure S3B ¹ H- ¹³ C HSQC spectrum of TMLH-catalysed TML hydroxylation.10Figure S3D ¹ H NMR spectru of TMLH-catalysed (2 <i>S</i> ,3 <i>S</i>)-3HO-TML (14) spiked with synthetic(2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13) post-HPLC purification.11Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 20Gconversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm).12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time($\delta = 2.95 - 3.95$ ppm).13Figure S3F Numbering used in TMLH product assignment.13Figure S5A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11).15Figure S5A ¹⁴ N NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11).15Figure S6A ¹⁴ NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11).16Figure S7A ¹⁴ NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11).16Figure S7A ¹⁴ N NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7A ¹⁴ N NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3	Figure S1C ¹ H NMR Mosher ester analysis of the C-3 alcohol of formamide (9)	6
Figure S2 ¹ H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13)and (R)-Mosher's acid chloride.8Figure S3A ¹ H- ¹ H COSY spectrum of TMLH-catalysed TML hydroxylation.10Figure S3B ¹ H- ¹³ C HSQC spectrum of TMLH-catalysed TML hydroxylation is coupled with synthetic(2,S,R)/(2R,35)-3HO-TML (13) post-HPLC purification.11Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 20Gconversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm).12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time($\delta = 2.95 - 3.95$ ppm).13Figure S3F Numbering used in TMLH product assignment.13Figure S3F Numbering used in TMLH product assignment.13Figure S5A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,35)-3HO-Lys (11).15Figure S5B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,35)-3HO-Lys (11).16Figure S7A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,35)-3HO-Lys (11).16Figure S7A ¹⁴ NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,35)-3HO-Lys (11).16Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,35)-3HO-Lys (11).16Figure S7A ¹⁴ NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,35)-3HO-Lys (11).16<	Figure S1D ¹⁹ F NMR Mosher ester analysis of the C-3 alcohol of formamide (9)	7
Figure S3A ¹ H- ¹ H COSY spectrum of TMLH-catalysed TML hydroxylation9Figure S3B ¹ H- ¹³ C HSQC spectrum of TMLH-catalysed TML hydroxylation10Figure S3C ¹ H NMR spectrum of TMLH-catalysed (2 <i>S</i> ,3 <i>S</i>)-3HO-TML (14) spiked with synthetic11(2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13) post-HPLC purification11Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 2OGconversion to succinate monitored over time (δ = 2.05 - 3.20 ppm)12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time(δ = 2.95 - 3.95 ppm)13Figure S3F Numbering used in TMLH product assignment13Figure S4 Amino acid analysis of TML-catalysed hydroxylation product14Figure S5A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)15Figure S6A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)16Figure S7A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)16Figure S7A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)17Figure S7A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13)17Synthesis18General Considerations18Dibenzyl-4,4-diethoxybutan-1-amine194-(dibenzylamino)butanal (6)20 <i>N</i> -[(2 <i>R</i> ,3 <i>R</i>)-3-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (10)23 <i>tert</i> -Butyl (2 <i>S</i> ,3 <i>R</i>)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23 <i>tert</i> -Butyl (2 <i>S</i> ,3 <i>R</i>)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (10)24(2 <i>S</i> ,3 <i>R</i>)-2-amino-2-carboxy-3-hydroxyhexanoate (10)24(2 <i>S</i>	Figure S2 ¹ H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13) and (<i>R</i>)-Mosher's acid chloride	8
Figure S3B ¹ H- ¹³ C HSQC spectrum of TMLH-catalysed TML hydroxylation10Figure S3C ¹ H NMR spectrum of TMLH-catalysed (2 <i>S</i> ,3 <i>S</i>)-3HO-TML (14) spiked with synthetic(2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13) post-HPLC purification11Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 2OGconversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm)12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time($\delta = 2.95 - 3.95$ ppm)13Figure S3F Numbering used in TMLH product assignment13Figure S4 Amino acid analysis of TML-catalysed hydroxylation product14Figure S5B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)15Figure S6A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)16Figure S6A ¹⁴ NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)16Figure S6A ¹⁴ NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)16Figure S7A ¹⁴ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13)17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13)17Synthesis18General Considerations18Dibenzyl-4,4-diethoxybutan-1-amine194-(dibenzylamino)butanal (6)20 <i>N</i> -[(9 <i>R</i>)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20 <i>tert</i> -Butyl (2 <i>S</i> ,3 <i>R</i>)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23 <i>tert</i> -Butyl (2 <i>S</i> ,3 <i>R</i>)-6-(dibenzylamino)propyl)-2,3-dihydroxazole-2-carboxylate (8)22 <i>tert</i> -Butyl (Figure S3A ¹ H- ¹ H COSY spectrum of TMLH-catalysed TML hydroxylation	9
Figure S3C ¹ H NMR spectrum of TMLH-catalysed (2 <i>S</i> ,3 <i>S</i>)-3H0-TML (14) spiked with synthetic $(2S,3R)/(2R,3S)$ -3H0-TML (13) post-HPLC purification.11Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 2OG2OGconversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm).12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time3Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time3Figure S3F Numbering used in TMLH product assignment.13Figure S5A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3S)-3H0-Lys (11).15Figure S5A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3S)-3H0-Lys (11).15Figure S6B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3S)-3H0-Lys (11).16Figure S6B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3S)-3H0-Lys (11).16Figure S7A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3S)-3H0-Lys (11).16Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3S)-3H0-Lys (11).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3S)-3H0-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3H0-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/2(2 <i>R</i> ,3 <i>S</i>)-3H0-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3H0-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/2(2 <i>R</i> ,3 <i>S</i>)-3H0-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/2(2 <i>R</i> ,3 <i>S</i>)-3H0-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/2(2 <i>R</i> ,3 <i>S</i>)-3H0-TML (13).17Synthesis.18 <t< td=""><td>Figure S3B ¹H-¹³C HSQC spectrum of TMLH-catalysed TML hydroxylation</td><td>10</td></t<>	Figure S3B ¹ H- ¹³ C HSQC spectrum of TMLH-catalysed TML hydroxylation	10
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Figure S3C ¹ H NMR spectrum of TMLH-catalysed (2 <i>S</i> ,3 <i>S</i>)-3HO-TML (14) spiked with synthetic	
Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 20G conversion to succinate monitored over time ($\delta = 2.05 - 3.20$ ppm).12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time ($\delta = 2.95 - 3.95$ ppm).13Figure S3F Numbering used in TMLH product assignment.13Figure S4 Amino acid analysis of TML-catalysed hydroxylation product.14Figure S5A ¹ H NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-Lys (11).15Figure S6A ¹ H NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-Lys (11).16Figure S6A ¹ H NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-Lys (11).16Figure S6A ¹ H NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-Lys (11).16Figure S7A ¹ H NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-Lys (11).17Figure S7A ¹ H NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-TML (13).17Figure S7A ¹ H NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of ($2S,3R$)/($2R,3S$)-3HO-TML (13).17Synthesis18General Considerations18Dibenzyl-4,4-diethoxybutan-1-amine.194-(dibenzylamino)butanal (6).20N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20 <i>tert</i> -Butyl ($2S,3R$)-6-(dibenzylamino)ropyl)-2,3-dihydrooxazole-2-carboxylate (8)22 <i>tert</i> -Butyl ($2S,3R$)-6-(dibenzylamino)2-formamido-3-hydroxyhexanoate (10)24($2S,3R$)-2-amino-2-formamido-3-hydroxyhexanoate (10)24($2S,3R$)-2-amino-2-carboxy-3-hydroxy-N,N-trimethylpe	(2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13) post-HPLC purification	11
conversion to succinate monitored over time (δ = 2.05 - 3.20 ppm).12Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time(δ = 2.95 - 3.95 ppm).13Figure S3F Numbering used in TMLH product assignment.13Figure S3F Numbering used in TMLH product assignment.13Figure S4 Amino acid analysis of TML-catalysed hydroxylation product.14Figure S4 Amino acid analysis of TML-catalysed hydroxylation product.14Figure S5A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11).16Figure S6A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11).16Figure S6B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11).16Figure S7A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).17SynthesisGeneral Considerations18Disponition:18	Figure S3D ¹ H NMR spectra of TMLH-catalysed TML hydroxylation is coupled to 20G	
Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time ($\delta = 2.95 - 3.95$ ppm). 13 Figure S3F Numbering used in TMLH product assignment. 13 Figure S4 Amino acid analysis of TML-catalysed hydroxylation product. 14 Figure S5A ¹ H NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-Lys (11). 15 Figure S6A ¹ H NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-Lys (11). 15 Figure S6A ¹ H NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-Lys (11). 16 Figure S6B ¹³ C NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-TML (13). 17 Figure S7A ¹ H NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-TML (13). 17 Figure S7B ¹³ C NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-TML (13). 17 Figure S7B ¹³ C NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-TML (13). 17 Figure S7B ¹³ C NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-TML (13). 17 Figure S7B ¹³ C NMR spectrum of ($2S,3R$)/ $(2R,3S$)-3HO-TML (13). 17 Figure S7B ¹³ C Comparison of ($2S,3R$)/ $(2R,3S$)-3HO-TML (13). 17 Synthesis 18 General Considerations 18 Dibenzyl-4,4-diethoxybutan-1-amine 19 4-(dibenzylamino)butanal (6) 20 N-[(9R)-10.1-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20 tert-Butyl ($2S,3R$)-3-(6-(dibenzylamino)-2-formamid	conversion to succinate monitored over time (δ = 2.05 - 3.20 ppm)	12
($\delta = 2.95 - 3.95$ ppm). 13 Figure S3F Numbering used in TMLH product assignment. 13 Figure S4 Amino acid analysis of TML-catalysed hydroxylation product. 14 Figure S5A ¹ H NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11). 15 Figure S5B ¹³ C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11). 15 Figure S6A ¹ H NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11). 16 Figure S6B ¹³ C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-Lys (11). 16 Figure S7A ¹ H NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-TML (13). 17 Figure S7B ¹³ C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-TML (13). 17 Figure S7B ¹³ C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-TML (13). 17 Figure S7B ¹³ C NMR spectrum of ($2S_3R$)/($2R_3S$)-3HO-TML (13). 17 Synthesis 18 General Considerations 18 Dibenzyl-4,4-diethoxybutan-1-amine. 19 4-(dibenzylamino)butanal (6). 20 N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ . 20 tert-Butyl ($2S_3R$)-6-(dibenzylamino)propyl)-2,3-dihydroxazole-2-carboxylate (8). 22 tert-Butyl ($2S_3R$)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9) 23 tert-Butyl ($2S_3R$)-6-amino-2-formamido-3-hydroxyhexanoate (10)	Figure S3E ¹ H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time	
Figure S3F Numbering used in TMLH product assignment.13Figure S4 Amino acid analysis of TML-catalysed hydroxylation product.14Figure S5A ¹ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11).15Figure S5B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11).15Figure S6A ¹⁴ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11).16Figure S6B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11).16Figure S7A ¹⁴ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11).16Figure S7A ¹⁴ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-TML (13).17Figure S7B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-TML (13).17Synthesis18General Considerations18Dibenzyl-4,4-diethoxybutan-1-amine.194-(dibenzylamino)butanal (6).20N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20tert-Butyl (2S,3R)-6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8).22tert-Butyl (2S,3R)-6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8).22tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (10).24(2S,3R)-2,6-Diamino-2-formamido-3-hydroxyhexanoate (10).24(2S,3R)-2,6-Diamino-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13).25(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11).26Synthesis of Mosher's esters for stereochemical investigation of (9).27Synthesis of Mosher's amides of (13).27	$(\delta = 2.95 - 3.95 \text{ ppm}).$	13
Figure S4 Amino acid analysis of TML-catalysed hydroxylation product. 14 Figure S5A ¹ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11) . 15 Figure S5B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11) . 16 Figure S6A ¹ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11) . 16 Figure S6B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11) . 16 Figure S7A ¹ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-TML (13) . 17 Figure S7B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-TML (13) . 17 Synthesis 18 General Considerations 18 Dibenzyl-4,4-diethoxybutan-1-amine. 19 4-(dibenzylamino)butanal (6) 20 N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide $(7)^3$ 20 <i>tert</i> -Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8) 22 <i>tert</i> -Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9) 23 <i>tert</i> -Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10) 24 (2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13) 25 (2S,3R)-2,-6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11) 26 Synthesis of Mosher's esters for stereochemical investigation of (9) 27 <	Figure S3F Numbering used in TMLH product assignment.	13
Figure S5A ¹ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11)	Figure S4 Amino acid analysis of TML-catalysed hydroxylation product	14
Figure S5B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11)	Figure S5A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)	15
Figure S6A ¹ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-Lys (11)	Figure S5B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)	15
Figure S6B 13 C NMR spectrum of $(2S,3R)/(2R,3S)$ -3HO-Lys (11) 16 Figure S7A 1 H NMR spectrum of $(2S,3R)/(2R,3S)$ -3HO-TML (13) 17 Figure S7B 13 C NMR spectrum of $(2S,3R)/(2R,3S)$ -3HO-TML (13) 17 Synthesis 18 General Considerations 18 Dibenzyl-4,4-diethoxybutan-1-amine 19 4-(dibenzylamino)butanal (6) 20 N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20 tert-Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8) 22 tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9) 23 tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10) 24 (2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13) 25 (2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11) 26 Synthesis of Mosher's esters for stereochemical investigation of (9) 27 Synthesis of Mosher's amides of (13) 27 References 28	Figure S6A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)	16
Figure S7A ¹ H NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-TML (13). 17 Figure S7B ¹³ C NMR spectrum of $(2S,3R)/(2R,3S)$ -3H0-TML (13). 17 Synthesis 18 General Considerations 18 Dibenzyl-4,4-diethoxybutan-1-amine 19 4-(dibenzylamino)butanal (6) 20 N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20 tert-Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8) 22 tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9) 23 tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10) 24 (2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13) 25 (2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11) 26 Synthesis of Mosher's esters for stereochemical investigation of (9) 27 Synthesis of Mosher's amides of (13) 27 References 28	Figure S6B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-Lys (11)	16
Figure S7B 13C NMR spectrum of $(2S,3R)/(2R,3S)$ -3HO-TML (13).17Synthesis18General Considerations18Dibenzyl-4,4-diethoxybutan-1-amine194-(dibenzylamino)butanal (6)20N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20tert-Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8)22tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10)24(2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13)25(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)26Synthesis of Mosher's esters for stereochemical investigation of (9)27Synthesis of Mosher's amides of (13)27References28	Figure S7A ¹ H NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13)	17
Synthesis18General Considerations18Dibenzyl-4,4-diethoxybutan-1-amine194-(dibenzylamino)butanal (6)20 N -[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20 $tert$ -Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8)22 $tert$ -Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23 $tert$ -Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10)24(2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13)25(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)26Synthesis of Mosher's esters for stereochemical investigation of (9)27Synthesis of Mosher's amides of (13)27References28	Figure S7B ¹³ C NMR spectrum of (2 <i>S</i> ,3 <i>R</i>)/(2 <i>R</i> ,3 <i>S</i>)-3HO-TML (13).	17
General Considerations18Dibenzyl-4,4-diethoxybutan-1-amine194-(dibenzylamino)butanal (6)20N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20tert-Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8)22tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10)24(2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13)25(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)26Synthesis of Mosher's esters for stereochemical investigation of (9)27Synthesis of Mosher's amides of (13)27References28	Synthesis	. 18
Dibenzyl-4,4-diethoxybutan-1-amine194-(dibenzylamino)butanal (6)20 N -[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7) ³ 20 $tert$ -Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8)22 $tert$ -Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23 $tert$ -Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10)24(2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13)25(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)26Synthesis of Mosher's esters for stereochemical investigation of (9)27Synthesis of Mosher's amides of (13)27References28	General Considerations	18
4-(dibenzylamino)butanal (6)	Dibenzyl-4,4-diethoxybutan-1-amine	19
N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7)3	4-(dibenzylamino)butanal (6)	20
tert-Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8)22tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10)24(2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13)25(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)26Synthesis of Mosher's esters for stereochemical investigation of (9)27Synthesis of Mosher's amides of (13)27References	N-[(9R)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7)3	20
tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)23tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10)24(2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13)25(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)26Synthesis of Mosher's esters for stereochemical investigation of (9)27Synthesis of Mosher's amides of (13)27References28	tert-Butyl (2S,3R)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (8)	22
 <i>tert</i>-Butyl (2<i>S</i>,3<i>R</i>)-6-amino-2-formamido-3-hydroxyhexanoate (10)	<i>tert</i> -Butyl (2 <i>S</i> ,3 <i>R</i>)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)	23
(2 <i>S</i> ,3 <i>R</i>)-2-amino-2-carboxy-3-hydroxy- <i>N</i> , <i>N</i> , <i>N</i> -trimethylpentan-6-aminium (13)25 (2 <i>S</i> ,3 <i>R</i>)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)26 Synthesis of Mosher's esters for stereochemical investigation of (9)	<i>tert</i> -Butyl (2 <i>S</i> ,3 <i>R</i>)-6-amino-2-formamido-3-hydroxyhexanoate (10)	24
(2 <i>S</i> ,3 <i>R</i>)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)	(2S,3R)-2-amino-2-carboxy-3-hydroxy-N,N,N-trimethylpentan-6-aminium (13)	25
Synthesis of Mosher's esters for stereochemical investigation of (9) 27 Synthesis of Mosher's amides of (13) 27 References 28	(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)	26
Synthesis of Mosher's amides of (13)	Synthesis of Mosher's esters for stereochemical investigation of (9)	27
References	Synthesis of Mosher's amides of (13)	27
	References	. 28

General Experimental Methods

Enzyme Production

Purified recombinant TMLH-MBP (MBP, maltose binding fusion protein) protein was prepared at the Latvian Biomedical Research and Study Centre (Riga, Latvia);¹ the MBP tag was cleaved as described. TMLH-MBP was incubated with the rTEV protease (20:1 TMLH-MBP:rTEV; a kind gift from Dr. Illaria Pettinati, University of Oxford) in 20 mM Tris, 200 mM NaCl, pH 7.5 overnight at 4°C. Following the protease-catalysed cleavage reaction, the resultant solution was incubated with dithiothreitol (1mM final concentration) overnight at 4°C, then purified by gel-filtration using a 16/600 Superdex S200 120ml HiLoad column (GE Healthcare Life Sciences) attached to an AKTA FPLC system; the protein was eluted in 50 mM Tris, 200 mM NaCl, pH 7.5.

NMR materials and methods

NMR experiments were carried out using a Bruker AVIII 700 MHz instrument equipped with a 5mm inverse TCI cryoprobe and 3mm Bruker Match tubes. The single-pulse nutation method was used to calibrate pulses (Bruker pulsecal routine). Tris- d_{11} and D_2O were obtained from Sigma-Aldrich.

TMLH assay incubations for NMR analysis comprised: 500 μ M *N*^{ε}-trimethyllysine hydrochloride, 1500 μ M (final concentration) 2-oxoglutarate (2OG, monosodium salt), 500 μ M *L*-ascorbate (disodium salt), 150 μ M ammonium iron(II) sulfate hexahydrate (Fe^(II)), 10 μ M TMLH, and 50 mM Tris-d₁₁, 200 mM NaCl, pH 8.0 buffer. The Fe^(II) solution was freshly prepared before each reaction by diluting a 100 mM Fe^(II) solution stock in 20 mM HCl with D₂O, as required, prior to addition to the reaction mixture. Reagent stock solutions were made up in D₂O immediately prior to use; the enzyme stock solution was made up in 50 mM Tris-d₁₁ with 200 mM NaCl by buffer exchanging the original enzyme solution (50 mM Tris, 200 mM NaCl, pH 7.5). Reactions were initiated by addition of the Fe^(II) solution. The first NMR spectrum was measured 240 sec after the start of reaction. All ¹H spectra were obtained using 64 scans. Control reactions were recorded without enzyme and metal.

2D NMR experiments used to assign the TMLH-catalysed turnover product were recorded after no further conversion of TML to 3HO-TML or 2OG to succinate was observed by ¹H NMR. Initial reactions were performed in Tris-d₁₁ pH 8.0, although pH 7.5 was determined to be optimal. All subsequent reactions were performed at pH 7.5 unless otherwise stated. 2D experiments used: ¹H-¹H COSY and multiplicity edited ¹H-¹³C HSQC NMR. Synthetic standards were characterised using a Bruker AVIII HD 400 instrument and 5 mm tubes.

Amino acid analysis

Samples were prepared as described for NMR analyses and subsequently freeze-dried. Freeze-dried samples were resuspended in borate buffer pH 9.0 and derivatised by 6-aminoquinolyl-*N*-hydroxysuccinimidyl carbamate (AQC) in acetonitrile at 25°C according to the AccQ-TagTM Ultra Derivatisation Protocol (Waters, USA). LC-MS analyses were performed as described² using a Waters Acquity ultra performance liquid chromatography system coupled to a Xevo® G2-S QTof mass spectrometer equipped with an electrospray ionisation source (Waters, USA). Gradient conditions for separation were carried out as described in the AccQ-TagTM Ultra Derivatisation Protocol (Waters, USA).

Conditions for positive ion mode ESI-MS detection were as follows: desolvation temperature, 600°C; source temperature, 100°C, capillary voltage, 3000 V; sample cone voltage, 20 V; cone gas flow, 30 L/min; and desolvation gas flow 1000 L/min. MS data were acquired and extracted ion chromatograms were produced for m/z values of either 359.2 or 375.2, corresponding to the theoretical masses of AQC-derivatized N^{ϵ} -trimethyllysine (359.2083) or hydroxy- N^{ϵ} -trimethyllysine (375.2032), respectively. Extracted ion chromatograms were smoothed to the mean (number of smooths, 2; smooth window channels, 3), and total ion current chromatograms were further baseline subtracted (polynomial order, 1; below curve %, 40; tolerance, 0.01).

Figures

Figure S1A ¹**H NMR spectrum of the Mosher's esters resulting from the reaction of formamide** (9) with (*S*)-Mosher's acid. The signals used in the stereochemical assignment are enlarged. As yet, separation of the mixture of stereoisomers has been unsuccessful by HPLC or crystallisation, hence the Mosher's method was used.

Figure S1B ¹**H NMR spectrum of the Mosher's esters resulting from the reaction of formamide** (9) with (*R*)-Mosher's acid. The signals used in the stereochemical assignment are enlarged.

Resolved proton signals	Major stereoisomer of (9)-[(<i>S</i>)-MTPA] ¹ H NMR δ^{S} (ppm)	Major stereoisomer of (9)-[(<i>R</i>)-MTPA] ¹ H NMR δ^{R} (ppm)	Δδ ^{SR} =(δ ^S - δ ^R) / (ppm)
-C <i>H</i> O	8.15	8.17	-0.02
-C ² N <i>H</i> CHO	5.91	6.03	-0.12
-C ³ HO-MTPA	5.48	5.52	-0.04
-C ⁶ H ₂ NBn ₂	2.37	2.30	+0.07

The phenyl group of (*S*)-MTPA shields protons residing in the \mathbb{R}^2 region. Therefore these protons resonate more upfield compared to the (*R*)-MTPA ester.

Figure S1C ¹H NMR Mosher ester analysis of the C-3 alcohol of formamide (9). ³ $\Delta \delta^{SR}$ values obtained from analysis of ¹H NMR (400 MHz) spectra of (*S*)- and (*R*)-Mosher's ester derivatives, (9)- [(*S*)-MTPA] and (9)-[(*R*)-MTPA]. Calculation of $\Delta \delta^{SR}$ values enables assignment of the stereochemistry at C-3 of (9). $\Delta \delta^{SR} = (\delta^{S} - \delta^{R})$ i.e. $\Delta \delta^{SR} = \delta(S-MTPA \text{ ester}) - \delta(R-MTPA \text{ ester})$.³ The basis of the Mosher's method is exemplified above for (2*S*,3*R*)-[(*S*)-MTPA].

Figure S1D ¹⁹F NMR Mosher ester analysis of the C-3 alcohol of formamide (9).⁴ Analysis of ¹⁹F NMR (377 MHz) spectra of (*S*)- and (*R*)-Mosher's ester derivatives, (9)-[(*S*)-MTPA] and (9)-[(*R*)-MTPA]. Comparing ¹⁹F resonances of both (9)-[(*S*)-MTPA] and (9)-[(*R*)-MTPA] supports the stereochemical assignment at C-3 of (9) as described in Fig. S1C.⁴

Figure S2 ¹H NMR spectrum of the crude aqueous reaction mixture of quaternary amine (13) and (R)-Mosher's acid chloride. The signals used in the stereochemical assignment are enlarged.

Figure S3A ¹H-¹H COSY spectrum of TMLH-catalysed TML hydroxylation. Reaction conditions: 500 μ M TML, 1500 μ M 2OG, 500 μ M *L*-ascorbate, 150 μ M Fe^(II), 10 μ M TMLH, 50 mM Tris-d₁₁, 200 mM NaCl, pH 7.5.

(mqq) thid2 lesimedD

Figure S3B ¹H-¹³C HSQC spectrum of TMLH-catalysed TML hydroxylation. Reaction conditions: 500 μ M TML, 1500 μ M 2OG, 500 μ M *L*-ascorbate, 150 μ M Fe^(II), 10 μ M TMLH, 50 mM Tris-d₁₁, 200 mM NaCl, pH 7.5.

Figure S3C ¹H NMR spectrum of TMLH-catalysed (2*S*,3*S*)-3HO-TML (14) spiked with synthetic (2*S*,3*R*)/(2*R*,3*S*)-3HO-TML (13) post-HPLC purification. A TMLH incubation with TML was spiked with synthetic (2*S*,3*R*)-3HO-TML (13) and purified by HPLC, as described in the General Experimental Methods section. Signals arising between $\delta = 3.50 - 3.75$ ppm (glycerol and ascorbate) are omitted for clarity.

Figure S3D ¹H NMR spectra of TMLH-catalysed TML hydroxylation showing coupling of hydroxylation to conversion of 2OG to succinate, monitored over time ($\delta = 2.05 - 3.20$ ppm). Reaction conditions: 500 µM TML, 1500 µM 2OG, 500 µM *L*-ascorbate, 150 µM Fe^(II), 10 µM TMLH, 50 mM Tris-d₁₁, 200 mM NaCl, pH 8.0.

Figure S3E ¹H NMR spectra of TMLH-catalysed TML hydroxylation monitored over time ($\delta = 2.95 - 3.95$ ppm). Reaction conditions: 500 µM TML, 1500 µM 2OG, 500 µM *L*-ascorbate, 150 µM Fe^(II), 10 µM TMLH, 50 mM Tris-d₁₁, 200 mM NaCl, pH 8.0. Signals between $\delta = 3.5 - 3.65$ ppm (mainly glycerol) have been omitted for clarity. Signals marked with an (*) are from the protein solution.

(2S)-N^{ε}-trimethyllysine (**1**)

(2*S*,3*R*)-3-hydroxy-*N*^ε-trimethyllysine (Synthesised 3HO-TML) (**13**)

(2*S*,3*S*)-3-hydroxy-*N*^{*ε*}-trimethyllysine (TMLH product) (**14**)

Figure S3F Numbering used in TMLH product assignment.

Figure S4 Amino acid analysis of the TMLH-catalysed hydroxylated product. (*A*) Schematic representation of derivatisation of the standard/product for amino acid analysis. (*B*) Non-overlaid extracted ion chromatograms (m/z = 375.2) corresponding to the theoretical exact mass of AQC-derivatised 3HO-TML. (*C*) Resultant mass spectra from (*B*) TMLH-treated sample spiked with (2S,3R)/(2R,3S)-3HO-TML at the retention times corresponding to (top) the (2S,3R)/(2R,3S)-3HO-TML standard (time = 3.214 min) and (*bottom*) the TMLH-treated sample (time = 3.066 min). Note the masses of the derivatised synthetic standard and the TMLH-catalysed product are the same (observed m/z = 375.2114; theoretical m/z = 375.2032).

Figure S5A ¹H NMR spectrum of (2*S*,3*R*)/(2*R*,3*S*)-3HO-Lys (11).

Figure S5B ¹³C NMR spectrum of (2*S*,3*R*)/(2*R*,3*S*)-3HO-Lys (11).

Figure S6A ¹H NMR spectrum of (2*S*,3*R*)/(2*R*,3*S*)-3HO-Lys (11).

Figure S6B ¹³C NMR spectrum of (2*S*,3*R*)/(2*R*,3*S*)-3HO-Lys (11).

5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 Chemical shift (ppm)

Figure S7A ¹H NMR spectrum of (2*S*,3*R*)/(2*R*,3*S*)-3HO-TML (13).

Figure S7B ¹³C NMR spectrum of (2*S*,3*R*)/(2*R*,3*S*)-3HO-TML (13).

Synthesis

General Considerations

All chemicals, reagents, and solvents were obtained from Sigma-Aldrich (Dorset, UK) and used without further purification. HPLC grade solvents were used for reactions, chromatography, and work-ups. Aqueous solutions were made using de-ionized water. Thin layer chromatography (TLC) was carried out using Merck (Darmstadt, Germany) silica gel 60 F254 TLC plates. TLC visualisation was carried out under UV light and stained with one of three stains; ninhydrin, potassium permanganate, or anisaldehyde. Chromatographic purifications were carried out using a Biotage[®] (Uppsala, Sweden) Isolera One or Biotage[®] SP4 flash purification system, using Biotage[®] pre-packed SNAP columns. Reactions were monitored using an Agilent (Cheshire, UK) 1200 series, 6120 quadrupole LC-MS system, and a Merck Chromolith® Performance RP-18 HPLC column. Deuterated solvents were obtained from Sigma-Aldrich, and 1D and 2D NMR spectra were obtained on a Bruker AVIII HD 400 (400 MHz), Bruker AVII 500 (500 MHz) with a ¹³C cryoprobe, and/or Bruker AVIII 700 (700 MHz) with an inverse TCI cryoprobe. All signals are described in δ ppm with multiplets being denoted as singlet, doublet, triplet, quartet, and multiplet using the abbreviations s, d, t, q, and m, respectively. Chemical shifts were referenced using residual solvent peaks with coupling constants, *J*, reported in hertz (Hz) to an accuracy of 0.5 Hz. For high-resolution mass spectrometry (HR-MS), a Bruker MicroTOF instrument with an ESI source and Time of Flight (TOF) analyser was used. MS data are represented as a ratio of mass to charge (m/z) in Daltons. A Bruker Tensor 27 instrument was used to obtain Fourier transform infrared spectra (FT-IR). Spectroscopic grade solvents and a Perkin Elmer 241 Polarimeter were used to obtain optical rotations.

Dibenzyl-4,4-diethoxybutan-1-amine

Bn₂

4-Aminobutyraldehyde diethyl acetal (5) (12.4 ml, 71.5 mmol) was dissolved in a 4:1 (v/v) of EtOH:distilled water (70 ml). Sodium carbonate (22.73 g, 214.5 mmol) was then added, followed by a solution of benzyl bromide (29.8 ml, 250.3 mmol) in EtOH (14 ml), which was added dropwise over 30 minutes. The resultant mixture was left under reflux overnight. The solvent was then removed *in vacuo*, and the resulting material diluted with water (60 ml) and CH₂Cl₂ (30 ml). The aqueous layer was washed with CH₂Cl₂ (2 x 30 ml); the organic layers were combined, dried over MgSO₄, then filtered. After evaporation of the solvent *in vacuo*, the crude reaction mixture was loaded onto a silica column and purified using flash column chromatography with an isocratic gradient (50:50 EtOAc/cyclohexane). After collecting the appropriate fractions, the solvent was removed *in vacuo* to yield dibenzyl-4,4-diethoxybutan-1-amine as a thin, colourless oil (21.8 g, 63.9 mmol, 89%).

¹**H NMR** (400 MHz, chloroform-*d*) $\delta = 7.4 - 7.2$ (10H, m, *Ph*), 4.4 – 4.3 (1H, m, CHO₂Et₂), 3.7 – 3.3 (m, 8H, OCH₂CH₃, CH₂Ph), 2.4 (2H, t, *J*=6.5 Hz, NCH₂CH₂), 1.7 – 1.5 (4H, m, NCH₂CH₂CH₂), 1.2 (6H, t, *J*=7.0 Hz, OCH₂CH₃) ppm. ¹³**C NMR** (101 MHz, chloroform-*d*) $\delta = 140.0$, 128.9, 128.3, 126.9, 102.9, 61.1, 53.1, 31.2, 22.3, 15.5 ppm. **FT-IR** ν_{max} (film) 3028, 2973, 2928, 2874, 2795, 1494, 1453, 1372, 1124, 1060, 743, 698 cm⁻¹. **HRMS** (ESI-TOF) calcd for C₂₂H₃₂NO₂ [M+H]⁺: 342.2428, found: 342.2429.

4-(dibenzylamino)butanal (6)

Dibenzyl-4,4-diethoxybutan-1-amine (2.0 g, 5.87 mmol) was dissolved in THF (2.93 ml); 20% (v/v) HCl_(aq) solution (2.93 ml) was then added. This mixture was stirred for 1 h at room temperature until complete reaction was observed by TLC (4:1 cyclohexane/EtOAc). The reaction was quenched by the addition of saturated NaHCO_{3(aq)}. The organic material was then extracted with EtOAc (3 x 20ml); the combined organic layers were washed with saturated NaHCO₃ and brine, then dried over MgSO₄ and filtered. After removal of volatiles by evaporation *in vacuo*, the crude reaction material was purified via flash column chromatography (0-20% cyclohexane/EtOAc over ~10 column volumes). The appropriate fractions were combined and the solvent removed to yield (**6**) as a pale yellow oil (1.13 g, 4.23 mmol, 72%).

¹**H NMR** (400 MHz, chloroform-*d*) $\delta = 9.7$ (1H, t, *J*=1.5 Hz, CHO), 7.3 (10H, s, *Ph*), 3.6 (4H, s, NCH₂Ph), 2.5 – 2.4 (4H, m, NCH₂CH₂CH₂), 1.8 (2H, p, *J*=7.0 Hz, NCH₂CH₂CH₂) ppm. ¹³**C NMR** (101 MHz, chloroform-*d*) $\delta = 202.7$, 139.6, 128.9, 128.3, 127.0, 58.5, 52.5, 41.8, 20.0 ppm. **FT-IR** v_{max} (film) 3027, 2802, 1721, 1493, 1452, 745, 698 cm⁻¹. **HRMS** (ESI-TOF) calcd for C₁₈H₂₂NO [M+H]⁺: 268.1696, found: 268.1693.

N-[(9*R*)-10,11-dihydrocinchonan-9-yl]-2-(diphenylphosphino)benzamide (7)⁵

The procedures of Sladojevich *et al.*⁵ and Cassani *et al.*⁶ were used. Cinchonine⁷ (3.0 g, 10.2 mmol) and triphenylphosphine (3.2 g, 12.2 mmol) were suspended in dry THF (51 ml). The mixture was cooled in an ice bath to 0°C, after which diisopropyl azodicarboxylate (2.41 ml, 12.2 mmol) was added. Diphenyl phosphoryl azide (2.64 ml, 12.2 mmol) was then dissolved in dry THF (21 ml); the resultant solution was added dropwise to the reaction mixture. Upon removing

the ice bath, the reaction mixture was allowed to warm to room temperature and stirred overnight. The resultant solution was heated for 2 h at 50°C, after which the volatiles were removed *in vacuo*. The resultant crude mixture was dissolved in CH_2Cl_2 (150 ml), and 4M hydrochloric acid was added. The aqueous phase was removed, and solid NaHCO₃ was then added to the aqueous phase until the pH was ~10 (litmus paper). The basic aqueous phase was then extracted with CH_2Cl_2 (3 x 100 ml), dried over MgSO₄, the CH_2Cl_2 was then removed *in vacuo* to give the desired azide in 94% crude yield.

The crude azide was then dissolved in MeOH (50 ml), and 10% Pd/C (750 mg) was added. The reaction flask was placed under a H₂ atmosphere by fitting the vessel with a septum, H₂ balloon, and syringe. The flask was evacuated and filled with H₂ three times, then stirred at room temperature at 1 atm overnight. The reaction mixture was then filtered through a short pad of Celite[®]; volatiles were removed *in vacuo* to yield the crude amine in apparent quantitative yield as a yellow oil, which was used without further purification.

The crude amine (1.70 g, 5.7 mmol) was dissolved in anhydrous CH_2Cl_2 (50 ml). 2-(diphenylphosphino)-benzoic acid (1.94 g, 6.3 mmol) and 4-dimethylaminopyridine (7 mg, 0.057 mmol) were then added. The resultant mixture was cooled to 0°C, then *N*-(3-dimethylaminopropyl)-*N'*-ethylcarbodiimide hydrochloride (1.1 g, 5.7 mmol) was added. The reaction mixture was allowed to warm to room temperature, after which it was stirred overnight at room temperature. After removing volatiles *in vacuo*, the resultant crude mixture was dissolved in EtOAc (50 ml), then washed with water, 10% NaHCO_{3(aq)}, and brine. After drying the organic phase over Na₂SO₄ and removing the solvent *in vacuo*, the crude mixture was purified by flash chromatography using an isocratic elution system (EtOAc/CH₂Cl₂/MeOH 5:2:1) to yield the desired compound as a pale yellow foam (3.2 g, 5.51 mmol, 54%, over three steps).

¹**H NMR** (400 MHz, chloroform-*d*) $\delta = 8.75$ (1H, d, *J*=4.5 Hz), 8.38 (1H, d, *J*=8.5 Hz), 8.11 (1H, dd, *J*=8.5, 1.5 Hz), 7.74 – 7.55 (4H, m), 7.40 – 7.15 (13H, m), 6.89 (1H, dd, *J*=7.0, 4.0 Hz), 5.37 (1H, s), 3.05 – 2.63 (4H, m), 2.59 – 2.41 (1H, m), 1.52 (1H, s), 1.47 – 1.32 (5H, m), 1.25 – 1.18 (1H, m), 0.89 (3H, t, *J*=7.0 Hz), 0.89 – 0.80 (1H, m) ppm. ¹³**C NMR** (101 MHz, chloroform-*d*) $\delta = 169.1$, 150.2, 148.5, 146.7, 141.3, 141.0, 137.8, 137.7, 137.3, 137.1, 135.9, 135.7, 134.3, 133.9, 133.8, 133.7, 133.6, 130.3, 127.4, 126.6, 123.5, 119.6, 60.5, 49.0, 37.3, 27.1, 26.0, 25.7, 25.0, 12.1 ppm. ³¹**P NMR** (162 MHz, chloroform-*d*) $\delta = -10.3$ ppm. **FT-IR** v_{max} (film) 2980, 1654, 1457, 745, 697 cm⁻¹. [*α*]_D²⁵ = + 60.6 (c = 0.2 in CH₂Cl₂)(Lit [*α*]_D²⁵ = +67.2, c = 0.5 CH₂Cl₂). **HRMS** (ESI-TOF): calcd for C₃₈H₃₉N₃O₁P₁ [M+H]⁺ 584.2825, found 584.2825. Spectroscopic data are consistent with those reported.⁵

tert-Butyl (2*S*,3*R*)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2carboxylate (8)

Bn₂N²

Pre-catalyst (7)³ (53 mg, 0.09 mmol) was dissolved in anhydrous EtOAc (5 ml) prior to addition of Ag₂O (9.3 mg, 0.04 mmol). The mixture was stirred for ~5 min at room temperature, then cooled in a dry ice/acetone bath. On cooling, *tert*-butyl isocyanoacetate (0.22 ml, 1.47 mmol) was added, followed by crushed, dried 4Å molecular sieves. A solution of aldehyde (6) (470 mg, 1.76 mmol) in anhydrous EtOAc (1 ml) was added; the reaction was quickly placed in a -20°C freezer with occasional stirring. The reaction was left overnight; consumption of the isocyanoacetate was monitored by TLC (50:50 EtOAc/cyclohexane), staining with anisaldehyde solution. After 16 h, the reaction mixture was quickly filtered through a short pad of silica gel eluting with EtOAc. The filtered reaction mixture was concentrated *in vacuo*, then purified using silica flash chromatography (0–40% EtOAc/cyclohexane over ~10 column volumes). Concentration of the appropriate fractions gave oxazoline (8) (468 mg, 1.15 mmol, 78%, d.r. > 95:1) as a viscous, colourless oil. An e.r. of 3:1 was determined by analysis of the ¹H NMR spectra of the corresponding Mosher's ester of formamide (9) (Fig. S1).

¹**H NMR** (500 MHz, toluene-*d*₈) δ = 7.32 – 7.26 (m, 4H, *Ph*), 7.19 – 7.14 (m, 4H, *Ph*), 7.11 – 7.07 (m, 2H, *Ph*), 6.36 (d, *J*=2.0, 1H, OC*H*N), 4.62 – 4.54 (m, 1H, CH₂C*H*(O)CH(N)), 4.06 (dd, *J* =7.0, 2.1, 1H, CH₂CH(O)C*H*(N)), 3.40 – 3.31 (m, 4H, NC*H*₂Ph), 2.24 (t, *J*=6.5, 2H, NC*H*₂CH₂), 1.49 – 1.36 (m, 3H, NCH₂C*H*₂C*H*_{*A*}), 1.35 (s, 9H, ^{*t*}*Bu*), 1.29 – 1.20 (m, 1H, NCH₂CH₂C*H*₂*CH*_{*B*}) ppm. ¹³**C NMR** (126 MHz, toluene-*d*₈) δ = 170.11, 155.58, 140.08, 129.04, 128.49, 127.18, 81.50, 81.06, 74.12, 58.73, 53.12, 32.78, 27.86, 22.78 ppm. **FT-IR** v_{max} (film) 3027, 2979, 2797, 1732, 1624, 1367, 1155, 1110, 745, 698 cm⁻¹. $[\alpha]_D^{25}$ = + 66.2° (c = 2.65 in CH₂Cl₂). **HRMS** (ESI-TOF): calcd for C₂₅H₃₂O₃N₂Na₁ [M+Na]⁺ 431.2305, found 431.2306.

tert-Butyl (2S,3R)-6-(dibenzylamino)-2-formamido-3-hydroxyhexanoate (9)

Bn₂N²

tert-Butyl(2*S*,3*R*)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (**8**) (400 mg, 0.98 mmol) was dissolved in THF (6 ml) prior to addition of 20% (v/v) AcOH_(aq) (4 ml). This mixture was stirred for 30 min (TLC monitor, 100% EtOAc) before the addition of saturated aqueous sodium hydrogen carbonate until a pH ~ 8 was reached. CH₂Cl₂ was then added and the organic material extracted with CH₂Cl₂ (3 x 20 ml). The organic layers were combined, dried over MgSO₄, and then evaporated *in vacuo*. The crude reaction material was purified using flash chromatography (0-100% EtOAc/cyclohexane over ~10 column volumes). The appropriate fractions were combined, and the solvent removed *in vacuo* to yield formamide (**9**) as a clear, viscous oil (379 mg, 0.89 mmol, 91%).

¹**H NMR** (400 MHz, chloroform-*d*) $\delta = 8.1$ (1H, s, NHC*H*O), 7.3 – 7.1 (10H, m, *Ph*), 6.5 (1H, d, *J*=9.0 Hz, CHN*H*CHO), 4.5 (1H, dd, *J*=10.0, 2.0 Hz, C*H*NHCHO), 4.0 (1H, dt, *J*=10.0, 2.0 Hz, C*H*OH), 3.7 (2H, d, *J*=13.0 Hz, NC*H*₂Ph), 3.3 (2H, d, *J*=13.0 Hz, NC*H*₂Ph), 2.5 – 2.3 (2H, m, NC*H*₂CH₂CH₂), 2.0 (1H, s, O*H*), 1.7 – 1.6 (3H, m, NCH₂C*H*₂C*H*₄), 1.4 (9H, s, ^{*t*}*Bu*), 1.2 – 1.1 (1H, m, NCH₂CH₂C*H*₂*CH*_{*B*}) ppm. ¹³C NMR (101 MHz, chloroform-*d*) $\delta = 169.8$, 161.4, 137.3, 129.8, 128.4, 127.5, 82.2, 72.0, 58.3, 55.8, 54.0, 33.9, 28.1, 24.1 ppm. **FT-IR** ν_{max} (film) 3356, 2934, 1738, 1669, 1369, 1158, 746, 699 cm⁻¹. $[\alpha]_D^{25} = + 10.4^\circ$ (c = 0.414 in CH₂Cl₂). **HRMS** (ESI-TOF): calcd for C₂₅H₃₅O₄N₂ [M+H]⁺ 427.2591, found 427.2577.

tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10)

tert-Butyl (2*S*,3*R*)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (**8**) (250 mg, 0.61 mmol) was dissolved in MeOH (5 ml) prior to addition of 5% (v/v) aqueous citric acid (2 ml). 10% palladium on carbon (100 mg/mmol) was added to the solution, and the reaction vessel was subsequently placed under an atmosphere of H₂ and stirred at room temperature for 24 h until complete conversion was observed (by TLC and/or LC-MS). The reaction mixture was filtered through a short pad of Celite®, then evaporated *in vacuo*. The residue was dissolved in CH₂Cl₂ (10 ml) and washed with a solution of saturated NaHCO₃ (10 ml). The aqueous fractions were frozen in liquid nitrogen and lyophilized. The resultant material was purified by loading onto a silica column pre-equilibrated with 100% CH₂Cl₂ and eluted with a gradient of 0-70% MeOH over 10 column volumes. The appropriate fractions were then concentrated *in vacuo* to yield amine (**10**) as a colourless oil (145 mg, 0.59 mmol, 96%).

¹**H NMR** (methanol- d_4 , 400 MHz) $\delta = 8.2$ (1H, s, NHCHO), 4.5 (1H, d, J=3.0 Hz, CHNHCHO), 4.1 (1H, td, J=6.5, 3.0 Hz, CHOH), 2.9 (2H, t, J=7.5 Hz, NH₂CH₂CH₂), 1.8 – 1.5 (4H, m, NH₂CH₂CH₂CH₂), 1.5 (9H, s, ^{*t*}Bu) ppm. ¹³**C NMR** (methanol- d_4 , 101 MHz) $\delta = 170.5$, 164.2, 83.5, 71.9, 57.2, 32.1, 28.3, 26.2 ppm. **FT-IR** v_{max} (film) 3286, 2934, 1732, 1665, 1522, 1157, 1084 cm⁻¹. $[\alpha]_D^{25} = +14.7^\circ$ (c = 0.08 in MeOH). **HRMS** (ESI-TOF): calcd for C₁₁H₂₃N₂O₄ [M+H]⁺ 247.1652, found 247.1664.

(2*S*,3*R*)-2-amino-2-carboxy-3-hydroxy-*N*,*N*,*N*-trimethylpentan-6-aminium (13)

tert-Butyl (2S,3R)-6-amino-2-formamido-3-hydroxyhexanoate (10) (200 mg, 0.81 mmol) was dissolved in a 2:1 (v/v) MeCN/MeOH solution (8.1 ml). Methyl iodide (252 µl, 4.05 mmol) and *N*,*N*-diisopropylethylamine (183 µl, 1.05 mmol) were then added. The reaction mixture was stirred at room temperature until complete reaction was observed after ~4 h by TLC (5:4:1, CHCl₃/MeOH/AcOH). The reaction mixture was concentrated *in vacuo*, dissolved in a small amount of CHCl₃, then loaded onto a pre-equilibrated silica column (100% CHCl₃) and purified by flash column chromatography (0-100% MeOH (+10% formic acid) over ~10 column volumes). Ninhydrin active fractions were collected and concentrated. The residue was then dissolved in 6M HCl_(aq) (8.1 ml) and stirred at room temperature overnight until complete reaction was observed by LC-MS. The reaction mixture was then concentrated to dryness. The resultant material was taken up in a minimal amount of H_2O , then purified using a cation exchange chromatography (Dowex[®] 1X8 200-400, Cl⁻ form) eluting in water. The ninhydrin active fractions were evaporated to dryness. The resultant residue was triturated several times with iPrOH to yield (13) a hygroscopic white powder (67 mg, 0.24 mmol, 30% over two steps); an e.r. of 3:1 was observed (Fig. S7A-B), as calculated by analysing the ¹H NMR spectra of the corresponding Mosher amides (Fig. S2).

¹**H NMR** (D₂O, 400 MHz) δ = 4.1 (1H, dt, *J*=9.0, 4.5 Hz, CHOH), 3.6 (1H, d, *J*=5.0 Hz, CH₂NH₂), 3.4 (2H, t, *J*=8.5 Hz, NH₂CH₂CH₂), 3.1 (9H, s, N(CH₃)), 2.1 – 1.8 (2H, m, NH₂CH₂CH₂CH₂CH₂), 1.8 – 1.5 (2H, m, NH₂CH₂CH₂CH₂) ppm. ¹³**C NMR** (D₂O, 101 MHz) δ = 173.1 , 69.7 , 60.0 , 53.5 , 30.7, 19.8 ppm. **FT-IR** v_{max} (film) 3363, 3026, 2919, 1735, 1622, 1489, 1222, 984 cm⁻¹. [α]_D²⁵ = + 14.7° (c = 0.1 in H₂O/MeOH (1:1)). **HRMS** (ESI-TOF): calcd for C₉H₂₁N₂O₃ [M]⁺ 205.1547, found 205.1547.

(2S,3R)-2,6-Diamino-3-hydroxyhexanoic acid di-hydrochloride salt (11)

tert-Butyl (2*S*,3*R*)-3-(6-(dibenzylamino)propyl)-2,3-dihydrooxazole-2-carboxylate (**8**) (336 mg, 0.82 mmol) was dissolved in MeOH (6 ml) prior to addition of 5% (v/v) aqueous citric acid (2.3 ml). 10% palladium on carbon (100 mg/mmol) was then added, and the reaction vessel was put under a H₂ atmosphere using a balloon. The reaction mixture was stirred for 24 h (until complete conversion occurred, by LC-MS/TLC), then filtered through a short pad of Celite®, which was then further washed with MeOH. The filtrate was concentrated *in vacuo* and purified by flash column chromatography (CH₂Cl₂/MeOH, 100/0 to 30/70). Ninhydrin active fractions were collected and concentrated to give a clear oil, which was analysed by ¹H NMR. The oil was dissolved in 3M HCl_(aq) and stirred overnight until complete reaction was observed by LC-MS and TLC. The reaction mixture was then concentrated to dryness to yield amine (**11**) as a white powder (di-hydrochloride salt, 176 mg, 0.75 mmol, 91%, Fig. S5A-B).

¹**H NMR** (400 MHz, D₂O) δ 4.16 (1H, dt, *J*=9.5, 3.5 Hz, CHOH), 3.91 (1H, d, *J*=4.5 Hz, CHNH₂), 3.04 (2H, t, *J*=7.5 Hz, CH₂NH₂), 1.94 – 1.55 (4H, m, NH₂CH₂CH₂CH₂) ppm. ¹³**C NMR** (101 MHz, D₂O) δ 170.99, 68.57, 58.11, 38.99, 30.02, 23.30 ppm.

Crude (**11**) was purified by cation exchange column chromatography using Dowex[®] 50WX8 200-400 (protonated form) resin that had been washed with H_2O . Crude (**11**) was then dissolved in a minimal amount of H_2O and loaded onto the column, followed by washing with at least 3 column volumes of water. The product was eluted with 3% (v/v) NH₄OH in MeOH to give purified (**11**) as a clear oil (Fig. S6A-B).

¹**H NMR** (400 MHz, D₂O) δ 4.01 – 3.90 (1H, m, CHOH), 3.55 (1H, d, *J*=5.0 Hz, CHNH₂), 2.96 (2H, t, *J*=7.0 Hz, CH₂NH₂), 1.85 – 1.46 (4H, m, NH₂CH₂CH₂CH₂) ppm. ¹³**C NMR** (101 MHz, D₂O) δ 172.62, 69.11, 59.32, 39.09, 30.30, 23.33 ppm. **FT-IR** v_{max} (film) 3033, 2923, 1698 cm⁻¹. $[\alpha]_D^{25} = + 6.8$ (c = 1.83 in MeOH) (Lit $[\alpha]_D^{25} = +16.9$, c = 1.83 MeOH)⁸. **HRMS** (ESI-TOF): calcd for C₆H₁₅O₃N₂ [M+H]⁺ 163.1077, found 163.1078.

Synthesis of Mosher's esters for stereochemical investigation of (9)

Formamide (9) (1.0 eq., a mixture of stereoisomers) was dissolved in a solution of (*S*)-Mosher's acid (0.1 M, 1.5 eq) in CH₂Cl₂. A solution of *N*,*N*'-dicyclohexylcarbodiimide in CH₂Cl₂ (0.1 M, 2 eq.) was then added, followed by 4-dimethylaminopyridine (DMAP) in CH₂Cl₂ (0.1 M, 0.1 eq.). The resultant mixture was stirred at room temperature overnight to yield a precipitate that was subsequently filtered through a short pad of Celite[®]. The filtrate was then passed through a short pad of silica eluting with 100% EtOAc. After evaporating the filtrate to dryness, the residue was dissolved in CDCl₃ for analysis by ¹H NMR. The ¹H NMR spectra of the resultant Mosher esters are shown in Fig. S1A-C. The procedure was repeated with (*R*)-Mosher's acid to investigate the absolute stereochemistry of the C-3 position.

Synthesis of Mosher's amides of (13)

Amine (5) (1.0 eq., a mixture of stereoisomers) was dissolved in a 10% NaCO₃ solution (0.2 M). (*R*)-Mosher's acid chloride solution in dioxane (0.2 M, 1.2 eq.) was then added to give a final reaction concentration of 0.1 M. This mixture was stirred for 3 h before being neutralized with a 1.0 M $HCl_{(aq)}$ solution and concentrated. The crude reaction mixture was concentrated to dryness and dissolved in D₂O for ¹H NMR analysis and e.r. determination; an e.r. of 3:1 was observed. The resultant ¹H NMR spectrum is shown in Fig. S2.

References

- 1 A. Kazaks, M. Makrecka-Kuka, J. Kuka, T. Voronkova, I. Akopjana, S. Grinberga, O. Pugovics and K. Tars, *Protein. Expr. Purif.*, 2014, **104**, 1-6.
- 2 M. Mantri, N. D. Loik, R. B. Hamed, T. D. Claridge, J. S. McCullagh and C. J. Schofield, *ChemBioChem*, 2011, **12**, 531-534.
- 3 T. R. Hoye, C. S. Jeffrey and F. Shao, *Nat. Protoc.*, 2007, **2**, 2451-2458.
- 4 G. R. Sullivan, J. A. Dale and H. S. Mosher, J. Org. Chem., 1973, **38**, 2143-2147.
- 5 F. Sladojevich, A. Trabocchi, A. Guarna and D. J. Dixon, *J. Am. Chem. Soc.*, 2011, **133**, 1710-1713.
- 6 C. Cassani, R. Martin-Rapun, E. Arceo, F. Bravo and P. Melchiorre, *Nat. Protoc.*, 2013, **8**, 325-344.
- 7 L. Sidorowicz and J. Skarzewski, *Synthesis*, 2011, **5**, 708-710.
- 8 P. F. Hughes, S. H. Smith and J. T. Olson, J. Org. Chem., 1994, **59**, 5799-5802.