・临床探讨・ DOI:10.3969/j.issn.1672-9455.2019.24.045

无锡 10 988 例人乳头瘤病毒基因分型检测结果分析

张防正,丁闰蓉,史青芸 无锡联合利康医学检验所,江苏无锡 214000

摘 要:目的 调查无锡地区成年女性人乳头瘤病毒(HPV)亚型感染的分布情况,为该地区 HPV 感染的防治提供参考。方法 收集 2018 年 7 月至 2019 年 5 月该实验室检测的 10 988 例成年女性宫颈分泌物筛查标本,通过聚合酶链反应(PCR)及反向点杂交技术检测 HPV 基因亚型,按年龄段及婚育情况分组分析。结果 10 988 例标本中,HPV 感染率为 22.67% (2 491/10 988);病毒亚型感染率由高到低排名前 5 位的是 HPV 52、HPV 16、HPV 53、HPV 58、HPV 39,感染率分别为 5.49%、3.22%、2.41%、2.39%、1.73%。不同年龄组间 HPV 感染率差异有统计学意义(P<0.01),并且随着年龄的增长,HPV 感染率呈上升趋势;单一感染和多重感染率在不同年龄组间差异有统计学意义(P<0.01);低危亚型和高危亚型感染率在不同年龄组间差异无统计学意义(P>0.05)。已婚组 HPV 感染率,以及低危和高危亚型感染率均明显高于未婚组,差异均有统计学意义(P<0.05)。结论 无锡地区成年女性 HPV 感染率为 22.67%,以高危亚型感染和单一亚型感染为主,已婚女性感染率明显高于未婚女性,不同年龄组间的感染情况有较为明显的差异。因此,HPV 分型检测在宫颈癌的早期预防、早期诊断具有重要意义。

关键词:人乳头瘤病毒; 聚合酶链反应; 反向点杂交

中图法分类号:R446.9

文献标志码:A

文章编号:1672-9455(2019)24-3688-03

人乳头瘤病毒(HPV)属于 DNA 病毒,能感染人体表皮和黏膜的鳞状上皮细胞,目前已分离出 200 多种基因亚型,能感染人生殖道的有 40 多种,不同的亚型感染可引起不同的症状,低危型包括 HPV6、11、40、42、43、44、81、83 等可引起皮肤扁平疣、寻常疣等,高危型包括 HPV16、18、31、33、35、39、45、51、52、56、58、59 等可引起尖锐湿疣,甚至宫颈癌、阴茎癌、直肠癌或癌前病变等[1-4],可见 HPV 是一种严重威胁人类健康的病原微生物。随着人们生活水平的提高和生活方式的改变,HPV 感染率有逐步升高的趋势,本文旨在利用大样本量的检测数据分析评估本地区成年女性 HPV 感染现状,现报道如下。

1 资料与方法

- 1.1 一般资料 收集 2018 年 7 月至 2019 年 5 月本 实验室检测的成年女性宫颈分泌物标本,共 10 988 例,年龄 19^{83} 岁,平均 (43.07 ± 10.69) 岁。已婚 9 365 例,未婚 1 623 例。按年龄分成 4 个组,其中 19^{83} 岁组共 1 635 例,平均年龄 (27.11 ± 2.69) 岁; 31^{83} (41 岁组共 3 016 例,平均年龄 (35.65 ± 3.00) 岁; 41^{83} (45.61 ± 2.92) 岁; (45.61 ± 2.92) 岁; (45.61 ± 2.92) 岁。
- 1.2 仪器与试剂 HPV 基因扩增试剂和模板提取 试剂均采购自杭州艾康生物技术有限公司;阴性、阳性对照品和质控品均为试剂盒配套产品,核酸扩增仪 为 BIO-RAD T100 型,核酸杂交仪为亚能 FYY-3 型。
- 1.3 方法 应用聚合酶链反应(PCR)扩增及反向点

杂交技术对 HPV 的 25 个亚型进行检测。使用与试剂配套的耗材,严格按说明书的操作取材、提取模板、PCR 扩增、杂交、洗膜、加酶、显色,然后通过与标准模条比对并观察判断结果。试剂盒自带内质控检测和外质控检测,排除由于取材和试剂稳定性的原因造成的假阴性。

1.4 统计学处理 应用 Microsoft Excel 软件和 SPSS20.0 统计学软件进行数据处理和统计学分析;符合正态分布的计量资料采用 $x \pm s$ 表示,组间比较采用 t 检验;计数资料采用百分数表示,组间比较采用 χ^2 检验;以 P < 0.05 为差异有统计学意义。

2 结 果

2.1 HPV 的各亚型感染率比较 10 988 例标本中 共检出阳性标本 2 491 例,总感染率为 22.67%;各亚型感染率由高到低排名前 5 位的是 HPV52、HPV16、HPV53、HPV58 和 HPV39,感染率分别是 5.49% (603/10 988)、3.22% (354/10 988)、2.41% (265/10 988)、2.39% (263/10 988)、1.73% (190/10 988)。见表 1。

表 1 10 988 例标本中 HPV 各亚型检出情况

HPV 亚型	阳性占比 [n=3 687,n%)]	感染率	HPV 亚型	阳性占比 [n=3 687,n%)]	感染率	
HPV52	603(16.35)	5.49	HPV43	115(3.12)	1 .05	
HPV16	354(9.60)	3 .22	HPV66	112(3.04)	1.02	
HPV53	265(7.19)	2.41	HPV40	104(2.82)	0.95	
HPV58	263(7.13)	2.39	HPV6	90(2.44)	0 .82	

续表 1 10 988 例标本中 HPV 各亚型检出情况

HPV 亚型	阳性占比 [n=3 687,n%)]	感染率 (%)	HPV 亚型	阳性占比 [n=3 687,n%)]	感染率 (%)	
H PV 39	190(5.15)	1.73	HPV18	89(2,41)	0.81	
HPV51	186(5.05)	1.69	HPV59	84(2,28)	0.76	
H PV 81	177(4.80)	1.61	HPV31	78(2.11)	0.71	
HPV42	162(4.39)	1.47	HPV11	38(1,03)	0.35	
HPV56	154(4.18)	1.40	HPV73	32(0,88)	0.29	
HPV44	141(3.82)	1.28	HPV45	29(0.79)	0.26	
HPV33	137(3.72)	1.25	HPV83	16(0.43)	0.15	
HPV35	129(3.50)	1.17	HPV26	13(0.35)	0.12	
HPV68	126(3.42)	1.15				

2.2 未婚组与已婚组 HPV 感染率比较 按婚否将标本分为已婚组与未婚组,已婚组 HPV 感染率,以及低危和高危亚型 HPV 感染率明显高于未婚组,差异

均有统计学意义(P<0.05)。见表 2。

2.3 不同年龄组的 HPV 感染率比较 结果显示,HPV 感染率在不同年龄组间差异有统计学意义 $(\chi^2 = 85.84, P < 0.01)$;单一感染和多重感染率在不同年龄组间差异有统计学意义 (P < 0.01);低危亚型和高危亚型感染率在不同年龄组间差异无统计学意义 (P > 0.05)。见表 3。

表 2 已婚组与未婚组 HPV 感染情况比较[n%)

组别	n	HPV 阳性	HPV 阴性	HPV 低危 亚型阳性	HPV 高危 亚型阳性	
已婚组	9 365	2 298(24 .54)	7 067 (75 .46)	871 (9 .30)	1 675(17 .89)	
未婚组	1 623	193(11.89)	1 430(88.11)	71(4.37)	211(13,00)	
χ^2		126 .19		9 .33	15 .16	
P		<0.01		< 0.01	< 0.01	

注:HPV 阳性是指标本至少有1个亚型是阳性;HPV 低危亚型阳性和 HPV 高危亚型阳性包括多重感染和混合感染

表 3 不同年龄组 HPV 感染情况比较 $\lceil n(\%) \rceil$

年龄组	n	HPV 阳性	HPV 阴性	单一感染	多重感染	HPV 低危亚型阳性	HPV 高危亚型阳性
19~<31 岁组	1 635	281(17.19)	1 354(82.81)	197(12.05)	84(5.14)	99(6.06)	225(13.76)
31~<41 岁组	3 016	619(20.52)	2 397(79.48)	468(15.52)	151(5.00)	207(6.86)	450(14.92)
41~<51 岁组	3 392	763(22.49)	2 629(77.51)	535(15.77)	228(6.72)	286(8.43)	568(17.28)
≥51 岁组	2 945	828(28.12)	2 117(71.88)	509(17.29)	319(10.83)	350(11.88)	643(21.83)
χ^2		85	.84	34.74	18.04	3.76	1.15
P		<(0.01	< 0.01	<0.01	>0.05	>0.05

3 讨 论

不同人群感染 HPV 亚型有所不同,其与人群的 分布和地域有关,HE 等[5]报道四川地区流行的 5 个 亚型分别是 HPV52、HPV53、HPV58、HPV16 和 HPV56;ZENG等[6]报道广东地区流行的5个亚型分 别是 HPV52、HPV16、HPV58、HPV56、HPV39; ZHANG等[7]报道上海地区流行的5个亚型分别是 HPV16、HPV58、HPV52、HPV51和HPV54。本研 究结果显示,无锡地区 HPV 感染率最高的亚型是 HPV52,其次是 HPV16、HPV53、HPV58 和 HPV39,与 ZENG 等^[6]的报道相似。宫颈癌是女性常见的恶性肿 瘤之一,已有研究表明,女性宫颈癌与 HPV 感染相 关,而 HPV16 是与女性宫颈癌关系最密切的一个亚 型,超过50%的宫颈癌患者其癌组织中可检测到 HPV16,通过对 HPV16 的全基因组测序分析,证实 HPV16 感染是引起女性宫颈癌变的独立危险因 素[8-9]。尽管 HPV 感染生殖道是一个长期的过程,但 在1~2 年内机体免疫系统可以将其清除,高危亚型 HPV 的持续感染会导致女性患宫颈癌的风险增 加^[10-12]。本研究选取的 10 988 例成年女性的 HPV 感染以高危亚型为主,且已婚女性感染率明显高于未

婚女性(*P*<0.05),因此,高危亚型感染的患者,特别是已婚女性,必须在专业医生的指导下积极治疗和定期复查。

HPV 的早期感染通常无明显症状,多数患者的感染是在体检过程中被发现。受人群的分布、标本的来源、取材的规范性、HPV 的检测技术等因素的影响,各研究报道的 HPV 感染率高低不一。ZENG等[6]对广东地区 51 345 例女性的分泌物标本进行HPV 分型检测,总感染率为 26.0%,高危亚型感染率为 21.1%。ZHANG等[7]对上海郊区 33 562 例女性分泌物标本进行 HPV 检测,其总感染率为 18.98%。CLAVEL等[13]用二代杂交捕获法检测 1 518 例 15~72 岁女性的 HPV 感染状况,结果显示,HPV 感染率为 22.3%,高危亚型感染率为 16.7%。本研究结果显示,无锡地区 10 988 例成年女性 HPV 感染率为 22.67%,高危亚型感染率为 17.16% (1 886/10 988),与文献[13]结果相似。

目前,临床上关于女性在 40 岁后的 HPV 感染率是否随年龄增长而增加仍存在争议,但本研究结果显示,随着年龄的增长,女性 HPV 感染率呈上升趋势,可能原因为随着年龄的增长,女性体内激素水平发生较大

变化,机体自身免疫功能降低,HPV 不能被免疫系统及时清除,造成 HPV 感染的潜伏期延长[14-15]。

HPV 感染在世界范围内是一种普遍存在的性传播疾病,尽管 HPV 疫苗早在 2006 年就已在美国获批准上市,但各国家、地区感染的亚型类别分布不同,现阶段的二价(HPV16/18)、四价(HPV6/11/16/18)和九价(HPV6/11/16/18/31/33/45/52/58)疫苗并不能覆盖所有的亚型,且接种疫苗的效果也有个体差异[16-18]。因此,相关部门应针对本地区 HPV 感染现状,加强健康教育,强调注重个人卫生,保持健康的两性生活方式,坚持锻炼身体提高免疫力和定期进行体检筛查的重要性。

本研究纳入分析的研究对象包括健康者、亚健康者及患者,但仅进行了分型分析,后续研究将对标本进行细分。目前,HPV已被发现的亚型有200多种,但临床常规检测的实际上只有20~30种,有一定的局限性,因此,不同的HPV检测试剂所能检测的亚型种类也对HPV感染率有一定的影响。

综上所述,无锡地区成年女性 HPV 感染率为 22.67%,以高危亚型感染和单一亚型感染为主,已婚女性感染率明显高于未婚女性,不同年龄组间的感染情况有较明显的差异。因此,HPV 分型检测在宫颈癌的早期预防、早期诊断具有重要意义。

参考文献

- [1] MAY, MADUPUR, KARAOZU, et al. Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets [J]. J Virol, 2014, 88(9):4786-4797.
- [2] MUÑOZ N,BOSCH F X,DE SANJOSES, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N Engl J Med, 2003, 348 (6):518-527.
- [3] HALEC G, ALEMANY L, LLOVERAS B, et al. Pathogenic role of the eight probably possibly carcinogenic HPV types 26,53,66,67,68,70,73 and 82 in cervical cancer[J]. J Pathol, 2014, 234(4):441-451.
- [4] AIMAGAMBETOVA G, AZIZAN A. Epidemiology of HPV infection and HPV-Related cancers in Kazakhstan; a review [J]. Asian Pac J Cancer Prev, 2018, 19(5):1175-1180.
- [5] HE L X, HE J Y. Distribution of high-risk HPV types among women in Sichuan province, China; a cross-sectional study [J]. BMC Infect Dis, 2019, 19(1):390.
- [6] ZENG Z, YANG H, LIZ, et al. Prevalence and genotype distribution of HPV infection in China; analysis of 51 345 HPV genotyping results from China's largest CAP certi-

- fied laboratory [J]. J Cancer, 2016, 7(9):1037-1043.
- [7] ZHANG C, ZHANG C, HUANG J, et al. Prevalence and genotype distribution of human papillomavirus among females in the suburb of Shanghai, China[J]. J Med Virol, 2018, 90(1):157-164.
- [8] MIRABELLO L, YEAGER M, YU K, et al. HPV16 E7 genetic conservation is critical to carcinogenesis [J]. Cell, 2017, 170(6):1164-1174.
- [9] DE LOURDES MORA-GARCIA M, LOPEZ-CISNEROS S, GUTIERREZ-SERRANO V, et al. HPV-16 Infection Is Associated with a High Content of CD39 and CD73 Ectonucleotidases in Cervical Samples from Patients with CIN-1[J]. Mediators Inflamm, 2019, 2019;4651627.
- [10] EBISCH R, KETELAARS P, VAN DER SANDEN W, et al. Screening for persistent high-risk HPV infections may be a valuable screening method for young women; a retrospective cohort study [J]. PLoS One, 2018, 13 (10); e0206219.
- [11] GUPTA S M, MANIA-PRAMANIK J. Molecular mechanisms in progression of HPV associated cervical carcinogenesis [J]. J Biomed Sci, 2019, 26(1):28.
- [12] LI W P, SHUANG T, WANG P, et al. The characteristics of HPV integration in cervical intraepithelial cells [J]. J Cancer, 2019, 10(12):2783-2787.
- [13] CLAVEL C, MASURE M, BORY JP, et al. Hybrid capture II-based human papillomavirus detection, a sensitive test to detect in routine high-grade cervical lesions; a preliminary study on 1518 women[J]. Br J Cancer, 1999, 80 (9):1306-1311.
- [14] 陈国斌,王月云,李晴,等.不同年龄组妇女 HPV 感染流 行病学研究[J].中国妇幼保健,2011,26(14):2155-2157.
- [15] AWUA A K, ADANU R M K, WIREDU E K, et al. Differences in age-specific HPV prevalence between self-collected and health personnel collected specimen in a cross-sectional study in Ghana [J]. Infect Agent Cancer, 2017, 12:26.
- [16] BONALDO G, VACCHERI A, D'ANNIBALI O, et al. Safety profile of human papillomavirus vaccines: an analysis of the US Vaccine Adverse Event Reporting System from 2007 to 2017[J].Br J Clin Pharmacol, 2019, 85(3): 634-643.
- [17] CASTLE P E, PROPHYLACTIC M M. HPV vaccination:past, present, and future[J]. Epidemiol Infect, 2016, 144(3):449-468.
- [18] BROTHERTON J L, BLOEM P N. HPV vaccination: current global status [J]. Curr Obstet Gynecol Rep, 2015, 4(4):220-233.

(收稿日期:2019-04-10 修回日期:2019-08-09)