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Abstract To investigate the mechanism of antirheumatic
action of mizoribine (MZR), we examined the expression of
matrix metalloproteinase-1 (MMP-1) and MMP-3 utilizing
THP-1 derived macrophage-like cells (THP-1 macroph-
ages) and human synovial fibroblasts (SFs). The cells were
respectively stimulated with lipopolysaccharide (LPS) and
interleukin-1b in the presence or absence of MZR in vitro.
The concentrations of MMP-1 and MMP-3 in the superna-
tant were measured by enzyme-linked immunosorbent as-
say. The secretion of MMP-1 from SFs, as well as THP-1
macrophages, was inhibited by MZR in a dose-dependent
manner. Furthermore, a quantitative real-time polymerase
chain reaction revealed that MZR decreased the expression
of MMP-1 messenger RNA. These findings may be an ex-
planation for the clinical effect of MZR in patients with
rheumatoid arthritis.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease char-
acterized by synovial inflammation and the destruction of
cartilage and bone. Fibroblast-like synoviocytes and
macrophages are predominantly observed in RA synovial
tissue containing a cartilage–pannus junction,1 and matrix
metalloproteinases (MMPs) secreted from these cells are
generally believed to play a critical role in joint destruction.2

Among the known MMPs, MMP-1 and MMP-3 were ini-
tially reported to be expressed in the synovial membranes
of RA patients.3 Recently, other MMPs, such as MMP-9,
MMP-12, and MMP-13, have also been found in the syn-
ovial membranes of RA patients.4–6 Furthermore, the serum
levels of MMP-1 and MMP-3 are correlated with general-
ized clinical disease activity,7 whereas synovial fluid MMP-
1, MMP-3, and TIMP-1 activities are correlated with local
joint inflammation.8 Although the mechanisms of the anti-
rheumatic actions of disease-modifying antirheumatic drugs
(DMARDs) are not fully understood, inhibiting the pro-
duction of MMPs has been postulated to contribute to the
prevention of joint destruction.9,10

Mizoribine (4-carbamoyl-1-b-D-ribofuranosylimidazo-
lium-5-olate, MZR) is an immunosuppressive drug that has
been used to treat patients with renal transplants and lupus
nephritis since the 1980s.11 Mizoribine suppresses the prolif-
eration of synovial fibroblasts12 and offers clinical advan-
tages to patients with RA. However, the mechanism by
which MZR benefits RA patients remains uncertain. To
examine the antirheumatic action of MZR, we focused on
MMP and tested whether MZR decreased the production
of MMP-1 and MMP-3 in human synovial fibroblasts (SFs)
and macrophage-like cells matured from the THP-1 cell
line.
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Materials and methods

Cell culture and measurement of MMP-1 and MMP-3 in
the supernatant

THP-1, a human acute myelomonocytic leukemia cell line,
was cultured in RPMI supplemented with 10% fetal calf
serum (FCS) containing 100ng/ml of phorbol myristate ac-
etate (PMA; Sigma, Tokyo, Japan) at a concentration of 1 ¥
105 cells/well in a 24-well plate for 48h, allowing the cells to
mature into macrophage-like cells (THP-1 macrophages).
The cells were washed once with the medium and stimu-
lated with 1mg/ml of lipopolysaccharide (LPS; Sigma) for
48h. The cells were untreated or treated with 1, 3, 10 and
30mg/ml of MZR (kindly donated by Asahikasei Pharma,
Tokyo, Japan) during the stimulation. In another experi-
ment, the same amount of MZR was added 24h prior to
LPS for pretreatment and coincubated during the stimula-
tion. Human SFs were derived from the synovial tissues of
healthy volunteers (CS-ABI-479 cells, purchased from
Dainippon Pharmaceutical, Osaka, Japan), cultured using a
CS-C complete medium kit (Dainippon), and stimulated
with 0.1ng/ml of interleukin (IL)-1b (R&D Systems,
Minneapolis, MN, USA) for 48h. Mizoribine, at concentra-
tions of 1 and 10mg/ml, was added 24h prior to IL-1b or
simultaneously, and coincubated during the stimulation.
The viability of cells after the stimulation was examined
with 0.4% trypan blue staining. The supernatants were
stored at -80°C, and the concentrations of MMP-1 and
MMP-3 were measured using enzyme-linked immuno-
sorbent assay (ELISA) kits (Fuji Chemical Industries,
Toyama, Japan).

Quantitative real-time polymerase chain reaction

mRNA was isolated from the SFs using an RNA extraction
kit (Qiagen, Hilden, Germany) and quantified using a spec-
trophotometer. One microgram of total RNA was reverse
transcribed into cDNA for use as a polymerase chain reac-
tion (PCR) template. The RNA samples were then dena-
tured at 65°C for 5min and reverse transcribed at 42°C for
60min. The PCR products were analyzed using 2% agarose
gel electrophoresis. Quantitative real-time PCR was per-
formed using an ABI Prism 7700 sequence detection system
(Biosystems, Foster City, CA, USA), according to the
manufacturer’s instructions. The b-actin gene was used to
control the amount of template in each sample. The PCR
amplifications were conducted in 25-ml reactions using 40
cycles with 1 mM of the appropriate primers (forward 5¢-
CTGAAGGTGATGAAGCAGCC-3¢ and reverse 5¢-AGT
CCAAGAGAATGGCCGAG-3¢ for MMP-1,13 forward 5¢-
ATGAAGAGTCTTCCAATCCTACTGT-3¢ and reverse
5¢-CATTATATCAGCCTCTCCTTCATAC-3¢ for MMP-
3,14 and forward 5¢-GGTCTCAAACATGATCTGGG-3¢
and reverse 5¢-GGGTGAGAAGGATTCCTATG-3¢ for b-
actin) and 12.5 ml of SYBR Green Master Mix (ABI). Each
cDNA sample was tested in triplicate. The PCR conditions
for MMP-1 consisted of a 5-min hot start at 95°C, followed

by 40 cycles for 1min at 95°C and 1min at 55°C,13 while
those for MMP-3 consisted of a 5-min hot start at 95°C,
followed by 40 cycles at 95°C for 45s and 45s at 55°C.14 The
results of the real-time PCR were analyzed using the ABI
Prism 7700HT sequence detection system.

Results

Effect of MZR on the secretion of MMP-1 and MMP-3
from stimulated THP-1 macrophages

To examine whether MZR decreases the release of MMP-1
and/or MMP-3 from THP-1 macrophages, we stimulated
the cells with LPS in the absence or presence of various
concentrations of MZR and measured the concentrations of
MMP-1 and MMP-3 in the supernatant using an ELISA.
When the MZR and LPS were added simultaneously, the
release of MMP-1 was inhibited by approximately 20%–
30% in a dose-dependent manner (Fig. 1). The inhibitory
effect was also equally observed when the cells were pre-
treated with MZR prior to LPS stimulation. On the other
hand, the release of MMP-3 from the THP-1 macrophages
was inhibited much weakly and not dose dependently (Fig.
2). The addition of MZR did not affect the cell viability and
form of the cells even at 30mg/ml, the maximum concentra-
tion used in this study.

Effect of MZR on release and mRNA expression of
MMP-1 and MMP-3 in stimulated SF

Next, we tested the inhibitory effect of MZR on MMP-1
and MMP-3 secretion from SFs, thought to be a major
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Fig. 1. Effect of mizoribine (MZR) on the secretion of matrix
metalloproteinase-1 (MMP-1) from THP-1 macrophages. Macroph-
ages derived from 1 ¥ 105 THP-1 cells were stimulated with lipopolysac-
charide (LPS) for 48h. The indicated concentrations of MZR were
added 24 h prior to LPS (black columns) or simultaneously (white
columns), and coincubated during the stimulation. The concentrations
of MMP-1 in the supernatant were measured using an enzyme-linked
immunosorbent assay (ELISA). Results were calculated into percent-
ages based on the amount of MMP-1 in the sample without MZR.
Bars show the mean ± standard deviation (SD) of three independent
experiments
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source of the serum MMPs found in patients with RA. The
cells were pretreated with MZR for 24h and stimulated
with IL-1b for another 48h. The concentrations of MMP-1
and MMP-3 in the supernatant were then measured using
the ELISA. As shown in Fig. 3, MMP-1 secretion from the
SFs was inhibited by approximately 60% by the addition of
10mg/ml of MZR. In contrast, the secretion of MMP-3 was
not significantly decreased by an equivalent dose of MZR.
The viability and form of the cells did not change by addi-
tion of MZR.

To further investigate the inhibitory effect of MZR on
MMP-1 secretion in stimulated SFs, the expression of
MMP-1 mRNA was quantified using real-time PCR. Both
protein secretion and the expression of MMP-1 mRNA

were decreased in the presence of 10mg/ml of MZR (Fig. 4),
whereas the inhibition of MMP-3 mRNA was weaker.

Discussion

In the inflamed synovial tissue of patients with RA, fibro-
blast-like synoviocytes and macrophages are the dominant
cell populations in areas adjacent to the cartilage–pannus
junction,1 and the secretion of proteolytic enzymes from
these cells plays a critical role for cellular invasion and the
degradation of cartilage and subchondral bone.15,16 Among
the proteases, the abundant production of MMP-1, which
can digest collagen types I, II, III, VI, and X, and gelatins,
was first demonstrated at the sites of joint erosion;17 later,
MMP-3 was also reported to be involved in the degradation
of articular cartilage and synovium.18–20 The expression of
these protease genes has been observed in tissues obtained
only a few weeks after the onset of symptoms,21 emphasizing
the very early potential for joint destruction, and indicating
the importance of MMP inhibition in the treatment of RA.

Mizoribine is an imidazole nucleoside isolated from the
culture medium of the mold Eupenicillum brefeldianum M-
2166, found in the soil of Hachijo island, Tokyo, Japan in
1974.11 Mizoribine was approved in Japan for the clinical
treatment of RA in 1992 after the marked amelioration of
adjuvant arthritis via the suppression of T-cell function was
demonstrated in rats22 and a low incidence of adverse clini-
cal effects was reported.23 Moreover, MZR treatment was
reported to improve bone lesions in the hind legs of animals
with adjuvant arthritis.24 Here, we examined whether MZR
could inhibit MMP-1 and MMP-3 production in stimulated
SFs and macrophage-like cells. The concentration of MZR
in body fluids has been reported to reach 5–10 mM (approxi-
mately equivalent to 2.0–4.0mg/ml) at its peak,25 and MZR
has been shown to partially inhibit MMP-1 production in
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Fig. 2. Effect of mizoribine (MZR) on the secretion of matrix
metalloproteinase-3 (MMP-3) from THP-1 macrophages. THP-1 mac-
rophages were stimulated with LPS for 48h. The indicated concentra-
tions of MZR were added 24 h prior to LPS (black columns) or
simultaneously (white columns), and coincubated during the stimula-
tion. The concentrations of MMP-3 in the supernatant were deter-
mined using an ELISA. Bars express the mean ± SD of three
independent experiments
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Fig. 3. Effect of mizoribine (MZR) on the secretion of matrix
metalloproteinase (MMP)-1 and MMP-3 from synovial fibroblasts
(SFs). The SFs were stimulated with 0.1 ng/ml of interleukin-1b (IL-1b)
and cultured for 48h. The indicated concentrations of MZR were
added 24h prior to IL-1b and coincubated during the stimulation. The
concentrations of MMP-1 and MMP-3 were determined using an
ELISA. Bars express the mean ± SD of triplicate wells
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Fig. 4. Effect of mizoribine (MZR) on the expression of matrix
metalloproteinase (MMP)-1 mRNA in SFs. RNA was extracted from
SFs treated as described in Fig. 3. The mRNA of MMP-1 and MMP-3
were quantified using real-time polymerase chain reaction. The results
were calculated as -fold based on the amount of unstimulated samples.
Bars indicate mean ± SD in triplicate
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vitro at approximately this concentration in THP-1 macro-
phages and at 3–5-fold higher concentration in SFs. We
expected MZR pretreatment to increase the reduction of
MMP-1 production on macrophages due to cell growth inhi-
bition; however, such an effect was not recognized. Others
have reported that mepacrine, an antimalarial drug, inhib-
ited the release of MMP-1 dose dependently in stimulated
human fibroblast-like synoviocytes.13 Methotrexate also in-
hibited the synthesis of MMP-1, but not of MMP-3, in SFs.26

More recently, leflunomide was reported to inhibit the pro-
duction of MMP-1, MMP-3, and MMP-13 secretion from
stimulated SFs, and this effect was suggested to be induced
by the suppression of the mitogen-activated protein kinase
signaling pathway.10,27,28 In fact, methotrexate and le-
flunomide have been reported to be capable of preventing
joint destruction in patients with RA.29–31

Although the mechanisms responsible for the inhibitory
effects of MZR are unclear, nuclear factor-kB (NF-kB)-
mediated transcription in synovial macrophages and activa-
tor protein 1 (AP-1), prominent in SFs, were reported to
induce MMPs synthesis in the synovia of patients with
RA,32–36 suggesting that MZR may inhibit part of the signal
transduction pathway conducted to NF-kB and/or AP-1.
Several existing drugs, include glucocorticosteroids, gold
thiolates, and d-penicillamine, have actions that directly or
indirectly inhibit NF-kB and/or AP-1.37 Moreover, in RA
synovial fibroblasts, IL-6 and MMP-1 are regulated by the
cyclin-dependent kinase inhibitor p21, and alterations in
p21 expression may activate AP-1 leading to enhanced
proinflammatory cytokine and MMP production.38 It was
reported that MZR could inhibit IL-6 production in RA
synovial fibroblasts,39 suggesting that MZR may inhibit IL-
6 and MMP-1 production in the same signal transduction
pathway.

Safety of MZR was assessed between two dosage groups,
150 mg/day and 300mg/day, of a report from post-market-
ing surveillance, and no statistical difference was observed
(1.3% and 7.1%, respectively).40 Furthermore, administra-
tion of 25mg/kg per day of MZR induced only mild reduc-
tion of splenic lymphocytes, and even 100mg/kg per day of
MZR did not decrease the number of bone marrow cells in
mice.41 In our study, the dose-dependent inhibitory effect of
MZR to MMP-1 production was recognized without affect-
ing the cell forms and number of dead cells. These findings
indicate that a higher dose of MZR may be tolerated and
required to obtain a sufficient clinical effect.
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