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Challenges in Physical Verification & Semi 
Manufacturing Persist at Sub-7nm Technologies

• More Masks

• Larger Dies

• More Simulations

• More Geometrical 
Processing

• More OPC Layers

• Increasing DRC 
Operations

Computing 
Capacity & 
Turn Around 
Time

• New Resist 
Materials

• 3D Mask, Resist and 
Wafer Effects

• New Lithography 
Techniques – EUV

New Process 
Effects

• Mask Defects

• Lower Process 
Margins

• Difficult to Detect 
Yield Limiters

Reliability & 
Yield

• Higher Design 
Complexity

• Higher Lithography 
Development 
Complexity

• Limited 
Engineering 
Resources

Productivity

Calibre Machine Learning2
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Calibre is the Verification Standard
…….so we see it all!

Calibre Market Perspective_ UMC _01183
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Calibre The Bridge Between Design and Silicon
Abstraction

GDSII

Physics

Silicon

Calibre_update_Mentor Korea_03184
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New Opportunities Enabled by Machine Learning

Calibre Machine Learning

Finding trends in large sets of unlabeled Data

Making predictions based on Trained Data

• Leverages 
large data 
volumes

• Useful when 
less domain 
knowledge 
is available

• Leverages 
small data 
volumes & 
some 
domain 
knowledge

Machine Learning in Calibre utilizes both techniques

Reference: Gigaom
5



Restricted © 2019 Mentor Graphics Corporation

Why Machine Learning?

 Relations getting too complicated to identify easily

 Requires quick response ( Almost no human interaction)

 Computationally expensive approaches – needs faster sol.

Calibre - Semi-manufacturing R&D, Aug 20156

Classification Regression

Supervised Unsupervised

Hotspot OPC

Clustering Transformation

Yield Learning from layout

Rule learning

SRAF

Retarget

Yield Retractors using Fab data
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Calibre Architecture Expanded to Integrate 
Machine Learning Infrastructure

Calibre Machine Learning

Training Data 
Preparation

Machine Learning Engine
& Model Creation

Machine Learning 
Application Programming 

Interfaces

Calibre Machine Learning System

Calibre Tools & Applications

Calibre Core Engine 
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Calibre ML Platform Overview

 Integrates test pattern generation for ML, model building and 
model execution seamlessly under one umbrella

 Integrated with full power of SVRF and Calibre (can mix and match 
use of SVRF and ML functionality

 Scalable and hierarchical processing capabilities

 Fully programmable by the user for IP protection (C and python 
interfaces are available)

 Total effort of 20+ men years 

Calibre Machine Learning8
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Broad Development of Machine Learning 
Applications in Calibre

Physical 
Design 

(custom/
P&R)

Physical 
Verification
(DRC/DFM)

Mask 
synthesis 
(Retarget/
RET/OPC)

Lithography
and Etch

verification 

Process 
Step

Metrology/
Inspection Electrical 

test and 
Failure 

diagnosis

Physical 
failure 

analysis

Process 
Step

Metrology/
Inspection Process 

Step

Metrology/
Inspection Process 

Step

Metrology/
Inspection 

IC Foundry
IC Fabless

Calibre Machine Learning

CMP Modeling

Yield Limiters Detection in Design -
LFD

Lithography Modeling

OPC 

Yield Limiters Detection in 
Manufacturing

Model Accuracy Standard

Machine Learning

Machine Learning -OPC Mask
Regular OPC Mask

9
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ACCURATE MODELING WITH 
MACHINE LEARNING

Calibre Machine Learning10
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Comparison Image Cognition and OPC model

cognitive ability OPC model

Data available # of data: almost no limit # of data: limited, 102 ~ 104

Model/Data update Relatively easy difficult

Feature Vector 16 (CNN by LeCun) ~ 100 (Mentor SONRTM)

Domain Image itself Influenced by other process as well 
as patterning (etch, CMP, thin film,,,)

Fail Rate Good if better than human vision 
error of 6 %

Good only if there is “no” pattern 
failure ~ 1e-9~-12

11

S. Chennupati, thesis Univ. of Michigan-Dearborn (2016)

Calibre Machine Learning
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Predictability of Machine Learning (ML)

12

 Overfit of flexible (or empirical) 
model. ML in particular
— In general, more rigid model shows 

less overfit while training error smaller.
— According to Ockham’s razor, more 

rigid model with smaller parameters 
preferred.

— Many parameters should be fitted in 
ML:  A contradiction to principle of 
Parsimony and a concern of overfit.

training

test

Overfit !

Principle of 
parsimony

Machine
Learning

QUO VADIS OCCAMUS ?

FRUSTRA FIT PER PLURA QUOD POTEST FIERI PER PAUCIORA
Plurality is never to be posited without necessity

Ockham’s razor, William of Ockham (1285~1347)

# of fitting parameters
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Calibre Machine Learning
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System Architecture of Litho Simulation 
with Neural Network

𝑅 𝑥, 𝑦 = 

𝑖=1

𝑀

𝑐𝑖𝑂𝑖 𝐼 𝑥, 𝑦

Optical 
model

Mask 
(input)

Resist model 
(deconstructed)

Resist contour 
(output)

M(x,y)
𝐼 𝑥, 𝑦 Oi 𝑥, 𝑦

Contour

S 𝑥, 𝑦 = 𝑇

NN

A Neural Network is used with inputs 
being the individual terms of a 
calibrated resist model

S 𝑥, 𝑦 = 𝑁𝑁 𝑂𝑖 𝑥, 𝑦 , for all i

S 𝑥, 𝑦

Better architectural choices for using machine learning for modeling in computational lithography 
are ones that preserve information channels which directly capture physical phenomena:
- Avoid complete black-box modeling
- Maintain manageable requirements for data volume on which to train the models
- Have higher confidence that the final model can extrapolate outside of its training set
- Neural network component is simpler and is responsible for learning only “residual” behaviors

Motto: Do not substitute real intelligence with artificial intelligence

Calibre Machine Learning13
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Results

 Convolutional neural network architectures with 
few hidden layers and careful selection of learnable 
filters result in good overall solutions for NNAM

 Sample image and cutline outputs from NNAM:

 Sample CD error plots:

CM1 NNAM

CM1 NNAM

Calibre Machine Learning14
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Measuring and Controlling Contour Quality

 The output of simulation in Computational Lithography 
are contours of the expected printing positions of 
arbitrary 2D layouts

 Resist (or after-etch) contour data are not always 
available for the model calibration stage
— Even when they are available, data size and data quality may 

be deficient

 A non-disruptive solution must fit in with existing 
practice
— Primarily CD-SEM data of high quality is available 

 So, how to control “quality” of contours of model 
output?

 First, we need to measure contour quality

CDNNAM

CDCM1

A Neural Network model 
that learns only from CD 
data is prone to bad 
contour predictions – unless 
provisions are taken

Good (physical) 
contour

Bad 
(non-physical) 
contour

Calibre Machine Learning15



Restricted © 2019 Mentor Graphics Corporation

OPC Model For Etch Process

16

 Accurate & fast etch model 
required
— Rigorous etch model is NOT available w.r.t. 

speed, in particular.
— Compact Variable Etch Bias (VEB) model can 

approximate etch process such as aperture 
and microloading effects.

— So far VEB model has been successful, but
accuracy needs to be improved below 10nm 
node.

— Many factors in etch process such as 
ion/radical reaction, chamber geometry power, 
etc. are not clearly understood

→ a good challenge for Machine Learning

Aperture Effect

different opening

Visible Kernel

Microloading Effect

different pattern-density

Gaussian Kernel

SW Jung, SPIE Vol. 9428 (2015)
Y. Granik, SPIE Vol. 4346 (2001)

Calibre Machine Learning
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 Both accuracy & predictability are 
improved with ML
— Test case: 10 nm Mx etch, ArFi

Total 563samples = 337training+113validation +113test

— We improved both accuracy and 
predictability using ML (about 2 to 4X)

– Accuracy: rmstraining+validation,2.40 → 0.65 nm
– Predictability: rmstest, 2.62 → 1.34 nm

Machine Learning Works !
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included in fitting
→ accuracy

excluded in fitting
→ predicatability

Accuracy (training + validation)

Predictability (test)

Pattern type

Pattern type
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MACHINE LEARNING IN OPC
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Higher Computational Demand for IC Design 
Tapeouts in Sub-7nm Technologies 

Y- axis represents the normalized increase in # of CPU cores to obtain the same OPC TAT. 
Critical Layer OPC for 100mm^2 chip design using EUV and Multiple Patterning

Calibre Machine Learning

Increasing computational demand drives the need to continue to speed up OPC
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CPU Cores

19
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Using Machine Learning in OPC

Calibre Machine Learning

Data Generation for Training
(Uses current OPC model)

Machine Learning 
Model for OPC

Full Chip OPC
(One Machine Learning iteration
+ two traditional iterations)

20



Restricted © 2019 Mentor Graphics Corporation

Regular OPC

Machine Learning OPC 

7nm product layer, 
printed with EUV.

3X Runtime Reduction with Calibre Machine 
Learning OPC

Calibre Machine Learning

Reduces computational demand
by 3X with improved accuracy

Edge Placement Error (OPC Accuracy Metric): Narrower is Better

Mode Cumulative OPC CPU 
Time (hrs)

Baseline 19806.41

Machine Learning OPC 5676.97

Blue:  ML-OPC Mask
Pink:  regular OPC Mask

21
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Significant Reduction in Computational Demand 
with Machine Learning OPC in IC Design Tapeouts

Calibre Machine Learning
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Y- axis represents the normalized increase in # of CPU cores to obtain the same OPC TAT. 
Critical Layer OPC for 100mm^2 chip design using EUV and Multiple Patterning
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Model and Rules Based SRAF Solutions

Model based SRAFs
SRAFs placed automatically by model-driven 
objective function.

Advantages:  Simple recipe setup, maximum 
SRAF coverage of complex 2D geometries.  
Only ~25% slower than Rulesbased.

Application:  Any complex 2D Logic Layouts 
(Cont/Via/Metals).

Both solutions can be combined into a “hybrid” recipe.

Rules based SRAFs
SRAF placement is tuned to ILT mask 
shapes.  

Advantages:  Perfectly consistent and 
deterministic placement.

Application:  Ideal for memory arrays, or 
any situation where perfect consistency is 
required.

Pink- ILT; 
Blue-nmSRAF

The industry trend is to use Rules based SRAFs
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Model Assisted Template Extractor (MATE)

 MATE was targeted to accelerate the initial SRAF recipe 
generation, successfully reduced the recipe time from 5 days to 
1 day.

 Detailed MATE flow is shown below:
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MATE:  Machine Learning For SRAF Insertion

 Rules-based SRAF insertion is faster and more consistent than Model-based.  

 Accuracy is often lower, due to the complexity of the placement rules.

 We have applied Decision Tree Learning to enable RB-SRAF rule generation, 
providing accuracy similar to Inverse Lithography ‘golden standard’.

 Run pxOPC (ILT) to 
generate ‘golden’ 
SRAFs.

 Output fully functional 
RB SRAF recipe.

Matching
RB-SRAFs

‘golden’ 
SRAFs

 Analyze golden SRAFs with 
Decision Tree Learning 
system. Decision Tree

Calibre Machine Learning25
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MATE Results

 Example result for 7nm Cut Layer.

pxOPC
MATE SRAF

Calibre Machine Learning26
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HOTSPOT DETECTION AND 
ANALYSIS WITH MACHINE 

LEARNING
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LFD Detects Yield Limiters Prior to Manufacturing 
at Design Stage 

Calibre Machine Learning

https://www.techdesignforums.com/practice/technique/quantifying-returns-on-litho-friendly-design/

28

https://www.techdesignforums.com/practice/technique/quantifying-returns-on-litho-friendly-design/
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LFD with Machine Learning –
Faster Path to Results

Machine Learning:
Identify Areas of Interest
• Improve Coverage 
• Reduce Unnecessary Simulation Area 
• Improve Runtime Performance

Lithography Simulation
• Yield Limiters Detection

Design Layout

Areas of Interest
For Simulation

Yield Limiters 
& Design Fixing Guidelines

Calibre Machine Learning29
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Using Machine Learning in LFD

Calibre Machine Learning

Data Generation for Training
(Can include broad range of 
systematic processing 
defects)

Machine Learning 
Model for LFD

Output with Predicted 
Yield Limiters & Design Fixing
Guidelines 

30
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LFD with Machine provides Significant Speedup while 
Finding New Yield Limiters

Yield Limiters in Training Set

Calibre Machine 
Learning System

Previously Undetected Yield 
Limiters

Calibre Machine Learning

10X Speedup in LFD Time 

Standard LFD

ML LFD

LFD LFD with Machine
Learning

Turn around
Time

31
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What is SONR? – Un/Semi supervised learning

 Calibre SONR is a new product combining multiple related applications under 
one license.

 SONR uses feature vectors which are shown to correlate well with fab printing 
behavior.  Layout shapes with similar feature vectors are shown to behave 
similarly in the fab.

 SONR Layout Analysis
— Uses unsupervised Machine Learning methods to enable layout reduction and comparison.

– Reduce a layout to minimum set of representative patterns.
– Compare 2 layouts to find unique patterns.

 SONR Hotspot Prediction (semi-supervised)
— Given knowledge of existing hotspot locations, predict new hotspots.

 SONR Hotspot Prediction (Supervised)
— Given knowledge of existing hotspot locations, build a model to predict new hotspots.

32 Calibre Machine Learning
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SONR ML Hotspot Prediction (Supervised)

 Trained Machine Learning model predicts new hotspot.

33

SONR Hotspot Prediction

Exact PM
Reduction

Layout A

New 
Hotspots
Database

Required Input

Optional (but recommended)
Input

Required Input

Known Hotspot
Coordinates

Trained Hotspot Model

Litho
Models

Calibre Machine Learning
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SONR ML Hotspot Prediction (Supervised)

 Trained Machine Learning model predicts new hotspot.
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SONR Hotspot Prediction

Exact PM
Reduction

Layout A

New 
Hotspots
Database

Required Input

Optional (but recommended)
Input

Required Input

Known Hotspot
Coordinates

Trained Hotspot Model

Litho
Models

Feature Vector 1

Fe
at

u
re

 V
ec

to
r 

2

Known Hotspots

Not Hotspots
SONR predicted Hotspots

Decision Boundary

Calibre Machine Learning
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CONCLUSIONS
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In Conclusion

 Calibre is the bridge between Design to Silicon – complete solution 
that covers the entire Tapeout flow

 Leveraging Machine Learning on the Calibre platform to provide 
faster, smarter and more accurate solutions to meet the design 
and manufacturing needs of today and the future

Calibre Machine Learning36


