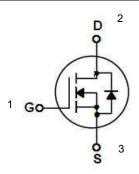


FQF11N45

Features

- 11A, 450V, RDS(on) = 0.436Ω @VGS = 10V
- Low gate charge (typical 9.6 nC)
- Low Crss (typical 9.0pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability


450V N-Channel MOSFET General Description

This Power MOSFET is produced using advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

1. Gate 2. Drain 3. Source

Symbol	Parameter	Value	Units
VDSS	Drain-Source Voltage	450	V
I _D	Drain Current - Continuous (TC= 25°C) - Continuous (TC= 100°C)	11	Α
		7.5*	А
I _{DM}	Drain Current - Pulsed (Note 1)	44*	А
V_{GSS}	Gate-Source Voltage	± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	368	mJ
I _{AR}	Avalanche Current (Note 1)	11	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)	28	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5	V/ns
P_{D}	Power Dissipation (TC = 25°C) - Derate above 25°C	33.2	W
		0.26	W/°C
T_{j},T_{stg}	Operating and Storage Temperature Range	-55 to +150	°C
TL	Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds	300	°C

^{*} Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	Value	Units
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	3.8	°C/W
$R_{\theta JS}$	Thermal Resistance, Case-to-Sink Typ.		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	43.3	°C/W

Electrical Characteristics TC = 25°C unless otherwise noted Symbol **Test Conditions** Min **Parameter** Typ Max Units Off Characteristics BV_{DSS} Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 250 \mu A$ 450 ΔBV_{DSS} Breakdown Voltage Temperature I_D = 250 μA, Referenc ed to 25°C V/°C 0.43 $/\Delta T_J$ Coefficient Zero Gate Voltage Drain Current $V_{DS} = 450 \text{ V}, V_{GS} = 0 \text{ V}$ 1 μΑ I_{DSS} V_{DS} = 320 V, TC = 125 10 μΑ I_{GSSF} $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate-Body Leakage Current, Forward 100 nΑ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ I_{GSSR} Gate-Body Leakage Current, Reverse -100 nΑ On Characteristics Gate Threshold voltage $V_{DS}=V_{GS}$, $I_D=250$ uA ٧ $V_{GS(TH)}$ 2.0 4.0 V_{GS} =10 V, I_{D} = 5.5 A, Drain-Source on-state resistance 0.436 0.550 Ω $R_{DS(On)}$ $T_J = 25^{\circ}C$ $V_{DS} = 40 \text{ V}, I_{D} = 5.5 \text{ A}$ Forward Transconductance S 5.0 g_{FS} (Note 4) **Dynamic Characteristics** C_{iss} Input capacitance 755 pF $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ Output capacitance 132 C_{oss} pF f = 1.0 MHz C_{rss} Reverse transfer capacitance 9.0 pF **Switching Characteristics** Turn On Delay Time 11 $t_{d(on)}$ ns $V_{DD} = 200 \text{ V, ID} = 11 \text{A}$ t_r Rising Time 25 ns $R_G = 25 \Omega$ Turn Off Delay Time 28 ns $t_{d(off)}$ (Note 4, 5) t_f Fall Time 26 ns Q_{α} **Total Gate Charge** 9.6 nC $V_{DS} = 320 \text{ V, ID} = 11 \text{A},$ $V_{GS} = 10 V$ nC Q_{gs} Gate-Source Charge 3.0 (Note 4, 5) \mathbf{Q}_{gd} Gate-Drain Charge 2.5 nC **Drain-Source Diode Characteristics and Maximum Ratings** Maximum Continuous Drain-Source Diode Forward Current I_{S} 11 Α I_{SM} Maximum Pulsed Drain-Source Diode Forward Current 44 Α $V_{\text{SD}} \\$ V Diode Forward Voltage $V_{GS} = 0 V, I_{S} = 11 A$ 1.2 $V_{GS} = 0 V, I_{S} = 11 A,$ Reverse Recovery Time t_{rr} 356 ns $dI_F / dt = 100 A/\mu s$ Reverse Recovery Charge μC

Note 4)

Notes:

 Q_{rr}

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 6.8 mH, IAS = 11 A, VDD = 50V, RG = 25 Ω, Starting TJ = 25° C
- 3. ISD≤11A, di/dt ≤200A/us, VDD ≤ BVDSS, Starting TJ =25°C
- 4. Pulse Test : Pulse width ≤ 300us, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature

2.4

Typical Characteristics

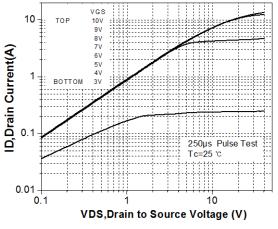


Figure 1. On-Region Characteristics

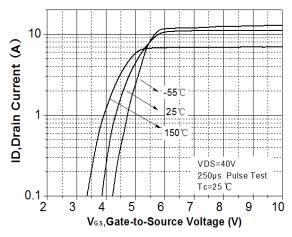


Figure 2. Transfer Characteristics

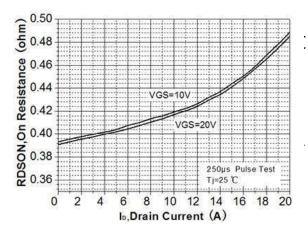


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

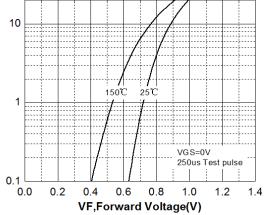


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

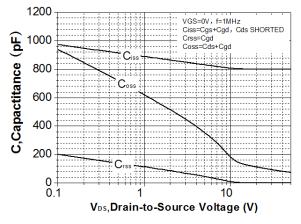


Figure 5. Capacitance Characteristics

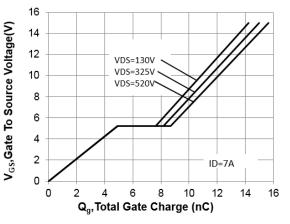


Figure 6. Gate Charge Characteristics

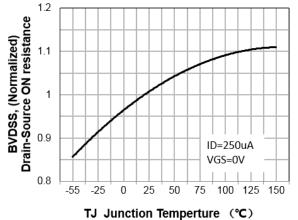


Figure 7. Breakdown Voltage Variation vs Temperature

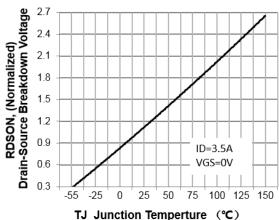


Figure 8. On-Resistance Variation vs Temperature

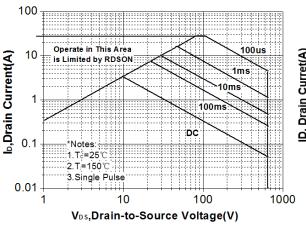


Figure 9. Maximum Safe Operating Area

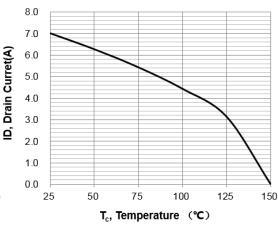


Figure 10. Maximum Drain Current vs Case Temperature

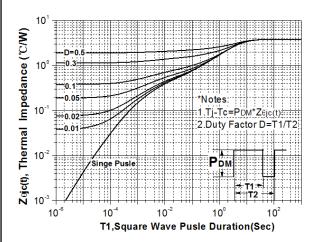
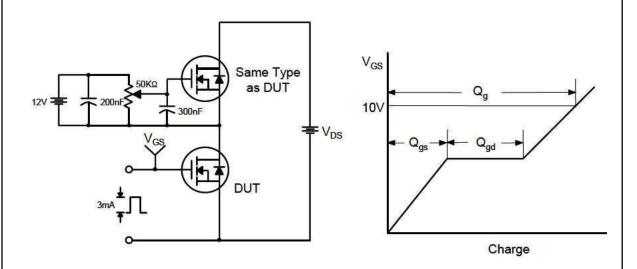
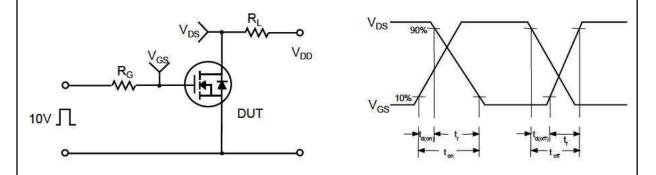
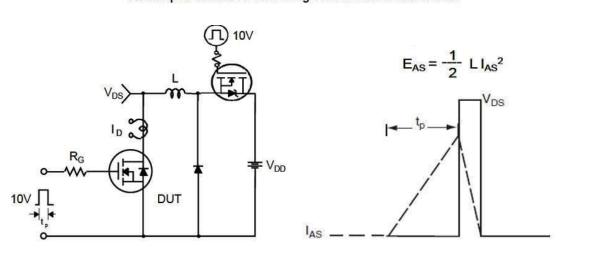




Figure 11. Transient Thermal Response Curve


Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

